論文の概要: Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments
- arxiv url: http://arxiv.org/abs/2405.15508v1
- Date: Fri, 24 May 2024 12:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:22:48.303581
- Title: Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments
- Title(参考訳): 粒子物理実験におけるデータ品質モニタリングのためのループ内強化学習
- Authors: Olivia Jullian Parra, Julián García Pardiñas, Lorenzo Del Pianta Pérez, Maximilian Janisch, Suzanne Klaver, Thomas Lehéricy, Nicola Serra,
- Abstract要約: 本稿では,データ品質モニタリングプロセスを自動化するために,人間によるループ強化学習を適用するための概念実証を提案する。
人間の分類におけるランダムな非バイアスノイズが低減され,ベースラインの精度が向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data Quality Monitoring (DQM) is a crucial task in large particle physics experiments, since detector malfunctioning can compromise the data. DQM is currently performed by human shifters, which is costly and results in limited accuracy. In this work, we provide a proof-of-concept for applying human-in-the-loop Reinforcement Learning (RL) to automate the DQM process while adapting to operating conditions that change over time. We implement a prototype based on the Proximal Policy Optimization (PPO) algorithm and validate it on a simplified synthetic dataset. We demonstrate how a multi-agent system can be trained for continuous automated monitoring during data collection, with human intervention actively requested only when relevant. We show that random, unbiased noise in human classification can be reduced, leading to an improved accuracy over the baseline. Additionally, we propose data augmentation techniques to deal with scarce data and to accelerate the learning process. Finally, we discuss further steps needed to implement the approach in the real world, including protocols for periodic control of the algorithm's outputs.
- Abstract(参考訳): データ品質モニタリング(DQM)は大規模な粒子物理学実験において重要な課題である。
現在、DQMは人間のシフト器によって実行されており、コストがかかり精度が制限されている。
本研究では、時間とともに変化する動作条件に適応しつつ、DQMプロセスの自動化にRL(Human-in-the-loop Reinforcement Learning)を適用するための概念実証を行う。
本稿では、PPOアルゴリズムに基づくプロトタイプを実装し、簡易な合成データセット上で検証する。
我々は、データ収集中にマルチエージェントシステムが継続的自動監視のためにどのようにトレーニングできるかを実証し、人間による介入を積極的に要求する。
人間の分類におけるランダムな非バイアスノイズが低減され,ベースラインの精度が向上することを示す。
さらに,不足データに対処し,学習プロセスの高速化を図るため,データ拡張手法を提案する。
最後に、アルゴリズムの出力を周期的に制御するためのプロトコルを含む、現実世界でのアプローチの実装に必要なさらなるステップについて論じる。
関連論文リスト
- CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
本稿では,Curiosity-driven Unsupervised Data Collection (CUDC)法を提案する。
この適応的な到達性機構により、特徴表現は多様化することができ、エージェントは、好奇心で高品質なデータを集めるために自分自身をナビゲートすることができる。
実験的に、CUDCはDeepMindコントロールスイートの様々なダウンストリームオフラインRLタスクにおいて、既存の教師なし手法よりも効率と学習性能が優れている。
論文 参考訳(メタデータ) (2023-12-19T14:26:23Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Efficient human-in-loop deep learning model training with iterative
refinement and statistical result validation [0.0]
本稿では,超音波イメージング機械学習パイプラインのデータクリーニングに必要なセグメンテーションを作成する方法を紹介する。
本研究では、自動生成したトレーニングデータと人間の視覚的チェックを高速に活用し、時間とコストを低く保ちながら、モデルの精度を向上させる4段階の手法を提案する。
本手法は、静的PHIを含む背景データを除去し、心臓超音波セグメンテーションタスクで実演する。
論文 参考訳(メタデータ) (2023-04-03T13:56:01Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
バッチ(オフライン)強化学習の最近の進歩は、利用可能なオフラインデータから学習する上で有望な結果を示している。
本研究では,不確実性推定を用いて人間の実演データを注入する手法を提案する。
実験の結果,本手法は,専門家データと準最適エージェントから収集したデータを組み合わせる方法に比べて,よりサンプル効率が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-16T01:41:59Z) - Model Predictive Control via On-Policy Imitation Learning [28.96122879515294]
我々は,データ駆動型モデル予測制御のための新しいサンプル複雑性結果と性能保証を開発する。
我々のアルゴリズムは制約付き線形MPCの構造を用いており、解析は明示的なMPC解の特性を用いて、最適性能を達成するのに必要なオンラインMPCトラジェクトリの数を理論的に制限する。
論文 参考訳(メタデータ) (2022-10-17T16:06:06Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
アウト・オブ・ディストリビューション(OD)検出は、リアルタイムにアウト・オブ・ディストリビューションを検出するという課題に対処する新しいアプローチである。
本稿では,自律走行エージェントの周囲の有害な動きを頑健に検出する方法について述べる。
提案手法は,OoD因子の検出能力を一意に改善し,最先端手法よりも42%向上した。
また,本モデルでは,実験した実世界およびシミュレーション駆動データに対して,最先端技術よりも97%の精度でほぼ完璧に一般化した。
論文 参考訳(メタデータ) (2021-07-25T07:52:53Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
文献では、Deep Convolutional Neural Networks (DCNNs)に基づく多数のオブジェクト検出方法が提案されている。
これらの手法はロボティクスに重要な制限がある:オフラインデータのみに学習するとバイアスが発生し、新しいタスクへの適応を防ぐことができる。
本研究では,弱い教師付き学習がこれらの問題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2020-12-28T16:36:11Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
6-DoF操作設定に合わせたデータ収集システムを構築します。
システムによって収集された新しいデータに基づいて,ポリシーを反復的にトレーニングするアルゴリズムを開発した。
介入型システムで収集したデータに基づいて訓練されたエージェントと、非介入型デモ参加者が収集した同等数のサンプルで訓練されたアルゴリズムを上回るエージェントを実証する。
論文 参考訳(メタデータ) (2020-12-12T05:30:35Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
時間駆動学習は、新しいデータが到着すると予測モデルのパラメータを継続的に更新する機械学習手法を指す。
ノイズなどの重要なシステムイベントによる時間駆動型dHDPの更新を防止することが望ましい。
イベント駆動型dHDPアルゴリズムは,従来の時間駆動型dHDPと比較して動作することを示す。
論文 参考訳(メタデータ) (2020-06-16T05:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。