論文の概要: Rethinking Independent Cross-Entropy Loss For Graph-Structured Data
- arxiv url: http://arxiv.org/abs/2405.15564v2
- Date: Mon, 27 May 2024 01:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:39:33.998473
- Title: Rethinking Independent Cross-Entropy Loss For Graph-Structured Data
- Title(参考訳): グラフ構造データに対する独立したクロスエントロピー損失の再考
- Authors: Rui Miao, Kaixiong Zhou, Yili Wang, Ninghao Liu, Ying Wang, Xin Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データの学習において顕著なパフォーマンスを示した。
本研究では,各ノードと対応するクラスタの結合分布をモデル化する,共同クラスタ型学習という新しいフレームワークを提案する。
このようにして、ローカルクラスタから抽出されたデータラベル参照信号は、ターゲットノード上の識別能力を明示的に強化する。
- 参考スコア(独自算出の注目度): 41.92169850308025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have exhibited prominent performance in learning graph-structured data. Considering node classification task, based on the i.i.d assumption among node labels, the traditional supervised learning simply sums up cross-entropy losses of the independent training nodes and applies the average loss to optimize GNNs' weights. But different from other data formats, the nodes are naturally connected. It is found that the independent distribution modeling of node labels restricts GNNs' capability to generalize over the entire graph and defend adversarial attacks. In this work, we propose a new framework, termed joint-cluster supervised learning, to model the joint distribution of each node with its corresponding cluster. We learn the joint distribution of node and cluster labels conditioned on their representations, and train GNNs with the obtained joint loss. In this way, the data-label reference signals extracted from the local cluster explicitly strengthen the discrimination ability on the target node. The extensive experiments demonstrate that our joint-cluster supervised learning can effectively bolster GNNs' node classification accuracy. Furthermore, being benefited from the reference signals which may be free from spiteful interference, our learning paradigm significantly protects the node classification from being affected by the adversarial attack.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データの学習において顕著なパフォーマンスを示した。
ノードラベル間のi.dの仮定に基づいてノード分類タスクを考えると、従来の教師付き学習は独立トレーニングノードのクロスエントロピー損失を単純に和らげ、GNNの重みを最適化するために平均損失を適用する。
しかし、他のデータフォーマットとは異なり、ノードは自然に接続される。
ノードラベルの独立分布モデリングは,グラフ全体を一般化し,敵攻撃を防御するGNNの能力を制限している。
本研究では,各ノードと対応するクラスタの結合分布をモデル化する,共同クラスタ型学習という新しいフレームワークを提案する。
我々は,ノードとクラスタのラベルを表現した共同分布を学習し,得られた共同損失でGNNを訓練する。
このようにして、ローカルクラスタから抽出されたデータラベル参照信号は、ターゲットノード上の識別能力を明示的に強化する。
本研究では,GNNのノード分類精度を効果的に向上させることができることを示す。
さらに,不利な干渉を伴わない参照信号の恩恵を受けながら,我々の学習パラダイムは,ノード分類が敵攻撃の影響を著しく防ぐ。
関連論文リスト
- Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
クロスネットワークノード分類(CNNC)は、豊富なラベルを持つソースネットワークから知識を転送することで、ラベル不足のターゲットネットワーク内のノードを分類することを目的としている。
本稿では,グラフニューラルネットワーク(GNN)と条件付き対向ドメイン適応を統合したドメイン適応型メッセージパッシンググラフニューラルネットワーク(DM-GNN)を提案する。
論文 参考訳(メタデータ) (2023-08-31T05:26:08Z) - TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification [33.028354930416754]
学習目的の局所的トポロジを反映するトポロジ・アウェア・マージン(TAM)を提案する。
提案手法は,ノード分類ベンチマークデータセットのベースラインよりも常に優位性を示す。
論文 参考訳(メタデータ) (2022-06-26T16:29:36Z) - GraFN: Semi-Supervised Node Classification on Graph with Few Labels via
Non-Parametric Distribution Assignment [5.879936787990759]
本研究では,グラフの半教師付き手法であるGraFNを提案し,同一クラスに属するノードをグループ化する。
GraFNはグラフ全体からラベル付きノードとアンカーノードからランダムにノードをサンプリングする。
実世界のグラフ上のノード分類において,GraFNが半教師付き手法と自己教師型手法のどちらよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-04T08:22:30Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - SSSNET: Semi-Supervised Signed Network Clustering [4.895808607591299]
SSSNETと呼ばれる半教師付きネットワーククラスタリングのためのGNNフレームワークにおいて、トレーニングノードに対する確率的バランスの取れた正規化カット損失を新たに導入する。
主な斬新なアプローチは、署名されたネットワーク埋め込みにおける社会的バランス理論の役割に関する新しい見解である。
論文 参考訳(メタデータ) (2021-10-13T10:36:37Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
論文 参考訳(メタデータ) (2020-03-26T22:07:28Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。