論文の概要: A Collective Learning Framework to Boost GNN Expressiveness
- arxiv url: http://arxiv.org/abs/2003.12169v2
- Date: Mon, 28 Sep 2020 20:42:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 21:14:41.058680
- Title: A Collective Learning Framework to Boost GNN Expressiveness
- Title(参考訳): gnn表現力向上のための集団学習フレームワーク
- Authors: Mengyue Hang, Jennifer Neville, Bruno Ribeiro
- Abstract要約: 教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
- 参考スコア(独自算出の注目度): 25.394456460032625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have recently been used for node and graph
classification tasks with great success, but GNNs model dependencies among the
attributes of nearby neighboring nodes rather than dependencies among observed
node labels. In this work, we consider the task of inductive node
classification using GNNs in supervised and semi-supervised settings, with the
goal of incorporating label dependencies. Because current GNNs are not
universal (i.e., most-expressive) graph representations, we propose a general
collective learning approach to increase the representation power of any
existing GNN. Our framework combines ideas from collective classification with
self-supervised learning, and uses a Monte Carlo approach to sampling
embeddings for inductive learning across graphs. We evaluate performance on
five real-world network datasets and demonstrate consistent, significant
improvement in node classification accuracy, for a variety of state-of-the-art
GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は最近、ノードとグラフの分類タスクで大きな成功を収めているが、gnnsは観測されたノードラベル間の依存関係ではなく、近くのノードの属性間の依存関係をモデル化している。
本研究では,ラベル依存を組み込むことを目的とした,教師付きおよび半教師付き設定におけるGNNを用いた帰納ノード分類の課題について考察する。
現在のGNNは普遍的な(最も表現力の高い)グラフ表現ではないため、既存のGNNの表現能力を高めるための一般的な集団学習手法を提案する。
本フレームワークは,集合的分類と自己教師付き学習を融合し,モンテカルロ法を用いてグラフ間の帰納的学習のための埋め込みをサンプリングする。
我々は,5つの実世界のネットワークデータセットの性能評価を行い,ノード分類の精度が一貫した,顕著に向上したことを示す。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - How Expressive are Graph Neural Networks in Recommendation? [17.31401354442106]
グラフニューラルネットワーク(GNN)は、レコメンデーションを含むさまざまなグラフ学習タスクにおいて、優れたパフォーマンスを示している。
近年、GNNの表現性を調査し、メッセージパッシングGNNがWeisfeiler-Lehmanテストと同じくらい強力であることを実証している。
本稿では,GNNがノード間の構造的距離を捉える能力を評価するために,位相的近接度尺度を提案する。
論文 参考訳(メタデータ) (2023-08-22T02:17:34Z) - Deep Ensembles for Graphs with Higher-order Dependencies [13.164412455321907]
グラフニューラルネットワーク(GNN)は多くのグラフ学習タスクで最先端のパフォーマンスを継続する。
従来のグラフ表現が各ノードの近傍に不適合な傾向は,既存のGNNの一般化に悪影響を及ぼすことを示す。
本稿では,同一ノードの異なる近傍部分空間上でGNNのアンサンブルを訓練することにより,近傍のばらつきを捉える新しいディープグラフアンサンブル(DGE)を提案する。
論文 参考訳(メタデータ) (2022-05-27T14:01:08Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Label-Consistency based Graph Neural Networks for Semi-supervised Node
Classification [47.753422069515366]
グラフニューラルネットワーク(GNN)は,グラフに基づく半教師付きノード分類において顕著な成功を収めている。
本稿では,GNNにおけるノードの受容領域を拡大するために,ノードペアが接続されていないが同一のラベルを持つラベル一貫性に基づくグラフニューラルネットワーク(LC-GNN)を提案する。
ベンチマークデータセットの実験では、LC-GNNはグラフベースの半教師付きノード分類において従来のGNNよりも優れていた。
論文 参考訳(メタデータ) (2020-07-27T11:17:46Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。