$$\mathbf{L^2\cdot M = C^2}$$ Large Language Models are Covert Channels
- URL: http://arxiv.org/abs/2405.15652v2
- Date: Mon, 07 Oct 2024 17:21:00 GMT
- Title: $$\mathbf{L^2\cdot M = C^2}$$ Large Language Models are Covert Channels
- Authors: Simen Gaure, Stefanos Koffas, Stjepan Picek, Sondre Rønjom,
- Abstract summary: Large Language Models (LLMs) have gained significant popularity recently.
LLMs are susceptible to various attacks but can also improve the security of diverse systems.
How well do open source LLMs behave as covertext to, e.g., facilitate censorship-resistant communication?
- Score: 11.002271137347295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have gained significant popularity recently. LLMs are susceptible to various attacks but can also improve the security of diverse systems. However, besides enabling more secure systems, how well do open source LLMs behave as covertext distributions to, e.g., facilitate censorship-resistant communication? In this paper, we explore open-source LLM-based covert channels. We empirically measure the security vs. capacity of an open-source LLM model (Llama-7B) to assess its performance as a covert channel. Although our results indicate that such channels are not likely to achieve high practical bitrates, we also show that the chance for an adversary to detect covert communication is low. To ensure our results can be used with the least effort as a general reference, we employ a conceptually simple and concise scheme and only assume public models.
Related papers
- Should You Use Your Large Language Model to Explore or Exploit? [55.562545113247666]
We evaluate the ability of large language models to help a decision-making agent facing an exploration-exploitation tradeoff.
We find that while the current LLMs often struggle to exploit, in-context mitigations may be used to substantially improve performance for small-scale tasks.
arXiv Detail & Related papers (2025-01-31T23:42:53Z) - Uncertainty-Aware Hybrid Inference with On-Device Small and Remote Large Language Models [49.48313161005423]
A hybrid language model (HLM) architecture integrates a small language model (SLM) operating on a mobile device with a large language model (LLM) hosted at the base station (BS) of a wireless network.
The HLM token generation process follows the speculative inference principle: the SLM's vocabulary distribution is uploaded to the LLM, which either accepts or rejects it, with rejected tokens being resampled by the LLM.
We propose a novel HLM structure coined Uncertainty-aware opportunistic HLM (U-HLM), wherein the SLM locally measures its output uncertainty and skips both up
arXiv Detail & Related papers (2024-12-17T09:08:18Z) - CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration [90.36429361299807]
multimodal large language models (MLLMs) have demonstrated remarkable success in engaging in conversations involving visual inputs.
The integration of visual modality has introduced a unique vulnerability: the MLLM becomes susceptible to malicious visual inputs.
We introduce a technique termed CoCA, which amplifies the safety-awareness of the MLLM by calibrating its output distribution.
arXiv Detail & Related papers (2024-09-17T17:14:41Z) - MaPPing Your Model: Assessing the Impact of Adversarial Attacks on LLM-based Programming Assistants [14.947665219536708]
We introduce the Malicious Programming Prompt (MaPP) attack, in which an attacker adds a small amount of text to a prompt for a programming task.
We show that our prompt strategy can cause an LLM to add vulnerabilities while continuing to write otherwise correct code.
arXiv Detail & Related papers (2024-07-12T22:30:35Z) - Decoding with Limited Teacher Supervision Requires Understanding When to Trust the Teacher [11.136112399898481]
How can small-scale large language models (LLMs) efficiently utilize the supervision of LLMs to improve their generative quality?
We develop an algorithm to effectively aggregate the small-scale LLM and LLM predictions on initial tokens.
We demonstrate that our method provides a consistent improvement over conventional decoding strategies.
arXiv Detail & Related papers (2024-06-26T01:16:12Z) - MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series [86.31735321970481]
We open-source MAP-Neo, a bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens.
Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs.
arXiv Detail & Related papers (2024-05-29T17:57:16Z) - Logits of API-Protected LLMs Leak Proprietary Information [46.014638838911566]
Large language model (LLM) providers often hide the architectural details and parameters of their proprietary models by restricting public access to a limited API.
We show that it is possible to learn a surprisingly large amount of non-public information about an API-protected LLM from a relatively small number of API queries.
arXiv Detail & Related papers (2024-03-14T16:27:49Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
It has been shown that adversarial attacks on large language models (LLMs) can "jailbreak" the model into making harmful statements.
We argue that the spectrum of adversarial attacks on LLMs is much larger than merely jailbreaking.
arXiv Detail & Related papers (2024-02-21T18:59:13Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - See the Unseen: Better Context-Consistent Knowledge-Editing by Noises [73.54237379082795]
Knowledge-editing updates knowledge of large language models (LLMs)
Existing works ignore this property and the editing lacks generalization.
We empirically find that the effects of different contexts upon LLMs in recalling the same knowledge follow a Gaussian-like distribution.
arXiv Detail & Related papers (2024-01-15T09:09:14Z) - A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly [21.536079040559517]
Large Language Models (LLMs) have revolutionized natural language understanding and generation.
This paper explores the intersection of LLMs with security and privacy.
arXiv Detail & Related papers (2023-12-04T16:25:18Z) - On the Safety of Open-Sourced Large Language Models: Does Alignment
Really Prevent Them From Being Misused? [49.99955642001019]
We show that open-sourced, aligned large language models could be easily misguided to generate undesired content.
Our key idea is to directly manipulate the generation process of open-sourced LLMs to misguide it to generate undesired content.
arXiv Detail & Related papers (2023-10-02T19:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.