論文の概要: Anomalous Change Point Detection Using Probabilistic Predictive Coding
- arxiv url: http://arxiv.org/abs/2405.15727v1
- Date: Fri, 24 May 2024 17:17:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 13:01:17.406486
- Title: Anomalous Change Point Detection Using Probabilistic Predictive Coding
- Title(参考訳): 確率的予測符号化を用いた異常変化点検出
- Authors: Roelof G. Hup, Julian P. Merkofer, Alex A. Bhogal, Ruud J. G. van Sloun, Reinder Haakma, Rik Vullings,
- Abstract要約: 確率予測符号化 (Probabilistic Predictive Coding, PPC) と呼ばれる深層学習に基づく CPD/AD 手法を提案する。
PPCは、連続したデータを低次元の潜在空間表現にエンコードし、その後のデータ表現とそれに対応する予測不確かさを予測することを共同で学習する。
本研究では, 合成時系列実験, 画像データ, 実世界の磁気共鳴分光画像データにまたがって提案手法の有効性と適応性を示す。
- 参考スコア(独自算出の注目度): 13.719066883151623
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Change point detection (CPD) and anomaly detection (AD) are essential techniques in various fields to identify abrupt changes or abnormal data instances. However, existing methods are often constrained to univariate data, face scalability challenges with large datasets due to computational demands, and experience reduced performance with high-dimensional or intricate data, as well as hidden anomalies. Furthermore, they often lack interpretability and adaptability to domain-specific knowledge, which limits their versatility across different fields. In this work, we propose a deep learning-based CPD/AD method called Probabilistic Predictive Coding (PPC) that jointly learns to encode sequential data to low dimensional latent space representations and to predict the subsequent data representations as well as the corresponding prediction uncertainties. The model parameters are optimized with maximum likelihood estimation by comparing these predictions with the true encodings. At the time of application, the true and predicted encodings are used to determine the probability of conformity, an interpretable and meaningful anomaly score. Furthermore, our approach has linear time complexity, scalability issues are prevented, and the method can easily be adjusted to a wide range of data types and intricate applications. We demonstrate the effectiveness and adaptability of our proposed method across synthetic time series experiments, image data, and real-world magnetic resonance spectroscopic imaging data.
- Abstract(参考訳): 変化点検出(CPD)と異常検出(AD)は、急激な変化や異常なデータインスタンスを特定するために、様々な分野において不可欠である。
しかし、既存の手法は、しばしば一変量データに制約され、計算要求による大規模なデータセットによるスケーラビリティの課題に直面し、高次元または複雑なデータによるパフォーマンスの低下と隠れ異常を経験する。
さらに、それらはドメイン固有の知識に対する解釈可能性や適応性に欠けることが多く、異なる分野にまたがる汎用性を制限する。
本研究では,確率予測符号化(Probabilistic Predictive Coding, PPC)と呼ばれる深層学習に基づくCDD/AD手法を提案する。
モデルパラメータは、これらの予測と真のエンコーディングを比較することにより、最大推定値に最適化される。
適用時には、真および予測された符号化を用いて、適合性の確率、解釈可能かつ有意義な異常スコアを決定する。
さらに,本手法には線形時間的複雑性があり,スケーラビリティの問題が防止され,幅広いデータ型や複雑なアプリケーションに容易に対応できる。
本研究では, 合成時系列実験, 画像データ, 実世界の磁気共鳴分光画像データにまたがって提案手法の有効性と適応性を示す。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
本研究では,データ拡張とソフトコントラスト学習の組み合わせを導入し,より正確に状態行動の多面的特性を捉えることを目的としている。
この二重戦略は、正常な状態と異常な状態を区別するモデルの能力を著しく向上させ、複数のデータセットと設定で障害検出性能が著しく向上する。
論文 参考訳(メタデータ) (2024-05-25T14:48:04Z) - DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
我々はDeepHYDRA(Deep Hybrid DBSCAN/reduction-based Anomaly Detection)を提案する。
DBSCANと学習ベースの異常検出を組み合わせる。
大規模なデータセットと複雑なデータセットの両方において、異なるタイプの異常を確実に検出できることが示されている。
論文 参考訳(メタデータ) (2024-05-13T13:47:15Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Multi-scale Fusion Fault Diagnosis Method Based on Two-Dimensionaliztion
Sequence in Complex Scenarios [0.0]
転がり軸受は回転機械において重要な要素であり、その欠陥は深刻な損傷を引き起こす可能性がある。
異常の早期発見は破滅的な事故を防ぐために不可欠である。
従来のインテリジェントな手法は時系列データを解析するのに用いられてきたが、現実のシナリオでは、センサデータはノイズが多く、時間領域で正確に特徴付けることはできない。
本稿では,産業シナリオに展開するためのマルチスケール機能融合モデルとディープラーニング圧縮技術を用いて,畳み込みニューラルネットワークの改良手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:05:50Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Time-Series Anomaly Detection with Implicit Neural Representation [0.38073142980733]
Inlicit Neural Representation-based Anomaly Detection (INRAD)を提案する。
入力に時間がかかり、その時点で対応する値を出力する単純な多層パーセプトロンを訓練する。
そして,その表現誤りを異常検出のための異常スコアとして利用する。
論文 参考訳(メタデータ) (2022-01-28T06:17:24Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
変化点検出(CPD)は、時系列データにおける急激な特性変化を見つけることを目的としている。
近年のCDD法は、深層学習技術を用いる可能性を示したが、信号の自己相関統計学におけるより微妙な変化を識別する能力に欠けることが多い。
我々は、新しい損失関数を持つオートエンコーダに基づく手法を用い、使用済みオートエンコーダは、CDDに適した部分的な時間不変表現を学習する。
論文 参考訳(メタデータ) (2020-08-21T15:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。