FastDrag: Manipulate Anything in One Step
- URL: http://arxiv.org/abs/2405.15769v3
- Date: Tue, 29 Oct 2024 14:09:30 GMT
- Title: FastDrag: Manipulate Anything in One Step
- Authors: Xuanjia Zhao, Jian Guan, Congyi Fan, Dongli Xu, Youtian Lin, Haiwei Pan, Pengming Feng,
- Abstract summary: We introduce a novel one-step drag-based image editing method, i.e., FastDrag, to accelerate the editing process.
This innovation achieves one-step latent semantic optimization and hence significantly promotes editing speeds.
Our FastDrag is validated on the DragBench dataset, demonstrating substantial improvements in processing time over existing methods.
- Score: 20.494157877241665
- License:
- Abstract: Drag-based image editing using generative models provides precise control over image contents, enabling users to manipulate anything in an image with a few clicks. However, prevailing methods typically adopt $n$-step iterations for latent semantic optimization to achieve drag-based image editing, which is time-consuming and limits practical applications. In this paper, we introduce a novel one-step drag-based image editing method, i.e., FastDrag, to accelerate the editing process. Central to our approach is a latent warpage function (LWF), which simulates the behavior of a stretched material to adjust the location of individual pixels within the latent space. This innovation achieves one-step latent semantic optimization and hence significantly promotes editing speeds. Meanwhile, null regions emerging after applying LWF are addressed by our proposed bilateral nearest neighbor interpolation (BNNI) strategy. This strategy interpolates these regions using similar features from neighboring areas, thus enhancing semantic integrity. Additionally, a consistency-preserving strategy is introduced to maintain the consistency between the edited and original images by adopting semantic information from the original image, saved as key and value pairs in self-attention module during diffusion inversion, to guide the diffusion sampling. Our FastDrag is validated on the DragBench dataset, demonstrating substantial improvements in processing time over existing methods, while achieving enhanced editing performance. Project page: https://fastdrag-site.github.io/ .
Related papers
- AdaptiveDrag: Semantic-Driven Dragging on Diffusion-Based Image Editing [14.543341303789445]
We propose a novel mask-free point-based image editing method, AdaptiveDrag, which generates images that better align with user intent.
To ensure a comprehensive connection between the input image and the drag process, we have developed a semantic-driven optimization.
Building on these effective designs, our method delivers superior generation results using only the single input image and the handle-target point pairs.
arXiv Detail & Related papers (2024-10-16T15:59:02Z) - InstantDrag: Improving Interactivity in Drag-based Image Editing [23.004027029130953]
Drag-based image editing has recently gained popularity for its interactivity and precision.
We introduce InstantDrag, an optimization-free pipeline that enhances interactivity and speed.
We demonstrate InstantDrag's capability to perform fast, photo-realistic edits without masks or text prompts.
arXiv Detail & Related papers (2024-09-13T14:19:27Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - LightningDrag: Lightning Fast and Accurate Drag-based Image Editing Emerging from Videos [101.59710862476041]
We present LightningDrag, a rapid approach enabling high quality drag-based image editing in 1 second.
Unlike most previous methods, we redefine drag-based editing as a conditional generation task.
Our approach can significantly outperform previous methods in terms of accuracy and consistency.
arXiv Detail & Related papers (2024-05-22T15:14:00Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
arXiv Detail & Related papers (2024-03-14T15:07:36Z) - Latent Space Editing in Transformer-Based Flow Matching [53.75073756305241]
Flow Matching with a transformer backbone offers the potential for scalable and high-quality generative modeling.
We introduce an editing space, $u$-space, that can be manipulated in a controllable, accumulative, and composable manner.
Lastly, we put forth a straightforward yet powerful method for achieving fine-grained and nuanced editing using text prompts.
arXiv Detail & Related papers (2023-12-17T21:49:59Z) - DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models [66.43179841884098]
We propose a novel image editing method, DragonDiffusion, enabling Drag-style manipulation on Diffusion models.
Our method achieves various editing modes for the generated or real images, such as object moving, object resizing, object appearance replacement, and content dragging.
arXiv Detail & Related papers (2023-07-05T16:43:56Z) - DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing [94.24479528298252]
DragGAN is an interactive point-based image editing framework that achieves impressive editing results with pixel-level precision.
By harnessing large-scale pretrained diffusion models, we greatly enhance the applicability of interactive point-based editing on both real and diffusion-generated images.
We present a challenging benchmark dataset called DragBench to evaluate the performance of interactive point-based image editing methods.
arXiv Detail & Related papers (2023-06-26T06:04:09Z) - LayerDiffusion: Layered Controlled Image Editing with Diffusion Models [5.58892860792971]
LayerDiffusion is a semantic-based layered controlled image editing method.
We leverage a large-scale text-to-image model and employ a layered controlled optimization strategy.
Experimental results demonstrate the effectiveness of our method in generating highly coherent images.
arXiv Detail & Related papers (2023-05-30T01:26:41Z) - Prompt Tuning Inversion for Text-Driven Image Editing Using Diffusion
Models [6.34777393532937]
We propose an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing.
Our proposed editing method consists of a reconstruction stage and an editing stage.
Experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-08T03:34:33Z) - FlexIT: Towards Flexible Semantic Image Translation [59.09398209706869]
We propose FlexIT, a novel method which can take any input image and a user-defined text instruction for editing.
First, FlexIT combines the input image and text into a single target point in the CLIP multimodal embedding space.
We iteratively transform the input image toward the target point, ensuring coherence and quality with a variety of novel regularization terms.
arXiv Detail & Related papers (2022-03-09T13:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.