AdaptiveDrag: Semantic-Driven Dragging on Diffusion-Based Image Editing
- URL: http://arxiv.org/abs/2410.12696v1
- Date: Wed, 16 Oct 2024 15:59:02 GMT
- Title: AdaptiveDrag: Semantic-Driven Dragging on Diffusion-Based Image Editing
- Authors: DuoSheng Chen, Binghui Chen, Yifeng Geng, Liefeng Bo,
- Abstract summary: We propose a novel mask-free point-based image editing method, AdaptiveDrag, which generates images that better align with user intent.
To ensure a comprehensive connection between the input image and the drag process, we have developed a semantic-driven optimization.
Building on these effective designs, our method delivers superior generation results using only the single input image and the handle-target point pairs.
- Score: 14.543341303789445
- License:
- Abstract: Recently, several point-based image editing methods (e.g., DragDiffusion, FreeDrag, DragNoise) have emerged, yielding precise and high-quality results based on user instructions. However, these methods often make insufficient use of semantic information, leading to less desirable results. In this paper, we proposed a novel mask-free point-based image editing method, AdaptiveDrag, which provides a more flexible editing approach and generates images that better align with user intent. Specifically, we design an auto mask generation module using super-pixel division for user-friendliness. Next, we leverage a pre-trained diffusion model to optimize the latent, enabling the dragging of features from handle points to target points. To ensure a comprehensive connection between the input image and the drag process, we have developed a semantic-driven optimization. We design adaptive steps that are supervised by the positions of the points and the semantic regions derived from super-pixel segmentation. This refined optimization process also leads to more realistic and accurate drag results. Furthermore, to address the limitations in the generative consistency of the diffusion model, we introduce an innovative corresponding loss during the sampling process. Building on these effective designs, our method delivers superior generation results using only the single input image and the handle-target point pairs. Extensive experiments have been conducted and demonstrate that the proposed method outperforms others in handling various drag instructions (e.g., resize, movement, extension) across different domains (e.g., animals, human face, land space, clothing).
Related papers
- Unsupervised Modality Adaptation with Text-to-Image Diffusion Models for Semantic Segmentation [54.96563068182733]
We propose Modality Adaptation with text-to-image Diffusion Models (MADM) for semantic segmentation task.
MADM utilizes text-to-image diffusion models pre-trained on extensive image-text pairs to enhance the model's cross-modality capabilities.
We show that MADM achieves state-of-the-art adaptation performance across various modality tasks, including images to depth, infrared, and event modalities.
arXiv Detail & Related papers (2024-10-29T03:49:40Z) - Auto DragGAN: Editing the Generative Image Manifold in an Autoregressive Manner [28.939227214483953]
This paper employs a regression-based network to learn the variation patterns of StyleGAN latent codes during the image dragging process.
We show that our method achieves state-of-the-art (SOTA) inference speed and image editing performance at the pixel-level granularity.
arXiv Detail & Related papers (2024-07-26T10:45:57Z) - OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDream is a camera orientation conditioned framework for efficient and multi-view consistent 3D generation from textual prompts.
Our strategy emphasizes the implementation of an explicit camera orientation conditioned feature in the pre-training of a 2D text-to-image diffusion module.
Our experiments reveal that our method not only produces high-quality NeRF models with consistent multi-view properties but also achieves an optimization speed significantly greater than existing methods.
arXiv Detail & Related papers (2024-06-14T13:16:18Z) - DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
We propose a training-free method, dubbed DiffUHaul, for the object dragging task.
We first apply attention masking in each denoising step to make the generation more disentangled across different objects.
In the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance.
arXiv Detail & Related papers (2024-06-03T17:59:53Z) - FastDrag: Manipulate Anything in One Step [20.494157877241665]
We introduce a novel one-step drag-based image editing method, i.e., FastDrag, to accelerate the editing process.
This innovation achieves one-step latent semantic optimization and hence significantly promotes editing speeds.
Our FastDrag is validated on the DragBench dataset, demonstrating substantial improvements in processing time over existing methods.
arXiv Detail & Related papers (2024-05-24T17:59:26Z) - Motion Guidance: Diffusion-Based Image Editing with Differentiable
Motion Estimators [19.853978560075305]
Motion guidance is a technique that allows a user to specify dense, complex motion fields that indicate where each pixel in an image should move.
We demonstrate that our technique works on complex motions and produces high quality edits of real and generated images.
arXiv Detail & Related papers (2024-01-31T18:59:59Z) - Layered Rendering Diffusion Model for Zero-Shot Guided Image Synthesis [60.260724486834164]
This paper introduces innovative solutions to enhance spatial controllability in diffusion models reliant on text queries.
We present two key innovations: Vision Guidance and the Layered Rendering Diffusion framework.
We apply our method to three practical applications: bounding box-to-image, semantic mask-to-image and image editing.
arXiv Detail & Related papers (2023-11-30T10:36:19Z) - DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing [94.24479528298252]
DragGAN is an interactive point-based image editing framework that achieves impressive editing results with pixel-level precision.
By harnessing large-scale pretrained diffusion models, we greatly enhance the applicability of interactive point-based editing on both real and diffusion-generated images.
We present a challenging benchmark dataset called DragBench to evaluate the performance of interactive point-based image editing methods.
arXiv Detail & Related papers (2023-06-26T06:04:09Z) - Blended Latent Diffusion [18.043090347648157]
We present an accelerated solution to the task of local text-driven editing of generic images, where the desired edits are confined to a user-provided mask.
Our solution leverages a recent text-to-image Latent Diffusion Model (LDM), which speeds up diffusion by operating in a lower-dimensional latent space.
arXiv Detail & Related papers (2022-06-06T17:58:04Z) - Semantic Layout Manipulation with High-Resolution Sparse Attention [106.59650698907953]
We tackle the problem of semantic image layout manipulation, which aims to manipulate an input image by editing its semantic label map.
A core problem of this task is how to transfer visual details from the input images to the new semantic layout while making the resulting image visually realistic.
We propose a high-resolution sparse attention module that effectively transfers visual details to new layouts at a resolution up to 512x512.
arXiv Detail & Related papers (2020-12-14T06:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.