論文の概要: Ensuring Ground Truth Accuracy in Healthcare with the EVINCE framework
- arxiv url: http://arxiv.org/abs/2405.15808v2
- Date: Tue, 28 May 2024 05:11:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:20:06.414407
- Title: Ensuring Ground Truth Accuracy in Healthcare with the EVINCE framework
- Title(参考訳): EVINCEフレームワークによる医療現場の真偽の確認
- Authors: Edward Y. Chang,
- Abstract要約: 機械学習モデルによる誤ったラベル付きデータの臨床実践への伝播は容認できない。
本稿では,1)診断精度の向上を目的としたEVINCEと,2)誤診の修正とトレーニングデータエラーの最小化を目的としたシステムを提案する。
- 参考スコア(独自算出の注目度): 2.5200794639628032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Misdiagnosis is a significant issue in healthcare, leading to harmful consequences for patients. The propagation of mislabeled data through machine learning models into clinical practice is unacceptable. This paper proposes EVINCE, a system designed to 1) improve diagnosis accuracy and 2) rectify misdiagnoses and minimize training data errors. EVINCE stands for Entropy Variation through Information Duality with Equal Competence, leveraging this novel theory to optimize the diagnostic process using multiple Large Language Models (LLMs) in a structured debate framework. Our empirical study verifies EVINCE to be effective in achieving its design goals.
- Abstract(参考訳): 誤診は医療において重大な問題であり、患者に有害な結果をもたらす。
機械学習モデルによる誤ったラベル付きデータの臨床実践への伝播は容認できない。
本稿では,EVINCEを提案する。
1【診断精度の向上】
2)誤診断を正し、トレーニングデータエラーを最小限にする。
EVINCE は、情報二重性によるエントロピー変化と等能力による表現であり、この新しい理論を利用して、構造化された議論フレームワークにおける複数の大規模言語モデル (LLM) を用いた診断プロセスを最適化する。
我々の実証研究はEVINCEが設計目標を達成するのに有効であることを検証している。
関連論文リスト
- Overcoming Uncertain Incompleteness for Robust Multimodal Sequential Diagnosis Prediction via Knowledge Distillation and Random Data Erasing [0.0]
我々は、不完全なデータの下で、不確実なモダリティ表現の優位性を扱うために、コード中心の診断で設計されたNECHOを修正した。
我々は,NECHOを教師と学生の両方に応用して,体系的な知識蒸留を開発する。
また,教師の訓練と蒸留の双方において,シーケンス内の個々のデータ点のランダム消去を利用して,来訪情報を欠くシナリオを軽々しくシミュレートする。
論文 参考訳(メタデータ) (2024-07-28T17:14:27Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
我々は、最先端の医療自動化機械学習モデルを再現し、比較し、分析する。
その結果, 弱い構成, サンプル化の不十分さ, 評価の不十分さなどにより, いくつかのモデルの性能が低下していることが判明した。
再生モデルを用いたMIMIC-IVデータセットの総合評価を行った。
論文 参考訳(メタデータ) (2023-04-21T11:54:44Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Medical Profile Model: Scientific and Practical Applications in
Healthcare [1.718235998156457]
本研究は, 患者の病歴を, 病の時間的シーケンスとして提示し, その埋め込みを教師なしで学習する。
埋め込みスペースには、一般化された患者プロファイルの作成を可能にする人口統計パラメータが含まれている。
このような医療プロファイルモデルのトレーニングは、100万人以上の患者のデータセット上で実施されている。
論文 参考訳(メタデータ) (2021-06-21T13:30:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - FIT: a Fast and Accurate Framework for Solving Medical Inquiring and
Diagnosing Tasks [10.687562550605739]
自己診断(Self-diagnosis)は、患者をクエリーし、疾患の予測を行うエージェントを介して、低コストでアクセス可能な医療を提供する。
我々は、次に収集するデータを決定するために情報理論の報酬を使用するFITと呼ばれる競合フレームワークを提案する。
シミュレーションした2つのデータセットから、FITは大規模な検索空間問題に効果的に対処でき、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-02T10:12:49Z) - A novel method for Causal Structure Discovery from EHR data, a
demonstration on type-2 diabetes mellitus [3.8171820752218997]
本稿では,新しいデータ変換手法と新しい因果構造探索アルゴリズムを提案する。
提案手法を2型糖尿病に適用した。
論文 参考訳(メタデータ) (2020-11-11T00:50:04Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。