論文の概要: SpotNet: An Image Centric, Lidar Anchored Approach To Long Range Perception
- arxiv url: http://arxiv.org/abs/2405.15843v1
- Date: Fri, 24 May 2024 17:25:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:29:48.142651
- Title: SpotNet: An Image Centric, Lidar Anchored Approach To Long Range Perception
- Title(参考訳): SpotNet:画像中心のライダーが長距離知覚にアプローチ
- Authors: Louis Foucard, Samar Khanna, Yi Shi, Chi-Kuei Liu, Quinn Z Shen, Thuyen Ngo, Zi-Xiang Xia,
- Abstract要約: SpotNetは高速で単一ステージのイメージ中心だが、長距離3Dオブジェクト検出のためのLiDARアンロックアプローチである。
我々は,LiDAR/画像センサフュージョンへのアプローチと2次元および3次元検出タスクの連成学習が組み合わさって,LiDARの精度が低い3次元物体検出に繋がることを示した。
- 参考スコア(独自算出の注目度): 3.627834388176496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose SpotNet: a fast, single stage, image-centric but LiDAR anchored approach for long range 3D object detection. We demonstrate that our approach to LiDAR/image sensor fusion, combined with the joint learning of 2D and 3D detection tasks, can lead to accurate 3D object detection with very sparse LiDAR support. Unlike more recent bird's-eye-view (BEV) sensor-fusion methods which scale with range $r$ as $O(r^2)$, SpotNet scales as $O(1)$ with range. We argue that such an architecture is ideally suited to leverage each sensor's strength, i.e. semantic understanding from images and accurate range finding from LiDAR data. Finally we show that anchoring detections on LiDAR points removes the need to regress distances, and so the architecture is able to transfer from 2MP to 8MP resolution images without re-training.
- Abstract(参考訳): 本稿では,スポットネット(SpotNet: 高速で単一ステージ,画像中心だがLiDARアンロックによる長距離3次元物体検出手法)を提案する。
我々は,LiDAR/画像センサフュージョンへのアプローチと2次元および3次元検出タスクの連成学習が組み合わさって,LiDARの精度が低い3次元物体検出に繋がることを示した。
より最近のバードアイビュー(BEV)センサーフュージョン法とは異なり、$O(r^2)$として$r$でスケールするが、SpotNetは$O(1)$でレンジでスケールする。
このようなアーキテクチャは、各センサの強度、すなわち画像からのセマンティック理解とLiDARデータからの正確な範囲探索を活用するのに最適である、と我々は主張する。
最後に、LiDAR点のアンカー検出により、距離を遅らせる必要がなくなることを示し、アーキテクチャは再トレーニングなしで2MPから8MPの解像度画像に変換可能であることを示す。
関連論文リスト
- Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
単分子と点雲に基づく3次元検出の利点を組み合わせたバランスの取れたアプローチを提案する。
本手法では,低コストで低解像度のセンサから得られる3Dポイントを少数必要としている。
3次元検出の精度は最先端の単分子検出法と比較して20%向上する。
論文 参考訳(メタデータ) (2024-04-10T03:54:53Z) - Towards Long-Range 3D Object Detection for Autonomous Vehicles [4.580520623362462]
長距離での3次元物体検出は、自動運転車の安全性と効率を確保するために不可欠である。
芸術的LiDARに基づく手法の現在のほとんどの状態は、長距離でのスパーシリティのため、範囲が限られている。
我々は,現在のLiDARを用いた3D検出器の長距離性能を改善する2つの方法を検討した。
論文 参考訳(メタデータ) (2023-10-07T13:39:46Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
現在広く使われているマルチモーダル3D検出法は、通常、密度の高いBird-Eye-View特徴マップを使用するLiDARベースの検出器上に構築されている。
完全にスパースなアーキテクチャは、長距離知覚において非常に効率的であるため、注目を集めている。
本稿では,新たに出現するフルスパースアーキテクチャにおいて,画像のモダリティを効果的に活用する方法を検討する。
論文 参考訳(メタデータ) (2023-04-24T17:57:43Z) - ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3D Object
Detection [20.44294678711783]
我々は,カメラ画像とLiDAR点雲のマルチスケール特徴を段階的に融合させることにより,センサ間差を狭める新しい3ODパラダイムであるImLiDARを提案する。
まず,マルチスケール画像とポイント特徴の最良の組み合わせを目的とした,クロスセンサ動的メッセージ伝搬モジュールを提案する。
第二に、効率的なセットベース検出器を設計できるような、直接セット予測問題を提起する。
論文 参考訳(メタデータ) (2022-11-17T13:31:23Z) - M$^2$-3DLaneNet: Exploring Multi-Modal 3D Lane Detection [30.250833348463633]
M$2$-3DLaneNetは、深度補完を通してLiDARデータから幾何情報を取り込むことで、2Dの機能を3D空間に持ち上げる。
大規模なOpenLaneデータセットの実験では、範囲に関係なく、M$2$-3DLaneNetの有効性が示されている。
論文 参考訳(メタデータ) (2022-09-13T13:45:18Z) - VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and
Stereo Data Fusion [62.24001258298076]
VPFNetは、ポイントクラウドとイメージデータを仮想のポイントで巧みに調整し集約する新しいアーキテクチャである。
当社のVPFNetは,KITTIテストセットで83.21%の中等度3D AP,91.86%中等度BEV APを達成し,2021年5月21日以来の1位となった。
論文 参考訳(メタデータ) (2021-11-29T08:51:20Z) - Frustum Fusion: Pseudo-LiDAR and LiDAR Fusion for 3D Detection [0.0]
本稿では,立体対から得られる高精度な点雲と,密度が高いが精度の低い点雲を結合する新しいデータ融合アルゴリズムを提案する。
我々は複数の3次元物体検出法を訓練し、核融合戦略が検出器の性能を継続的に改善することを示す。
論文 参考訳(メタデータ) (2021-11-08T19:29:59Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
本稿では,LIDARとカメラを併用して高精度な位置検出を実現する3Dオブジェクト検出器を提案する。
我々は,連続畳み込みを利用して画像とlidar特徴マップを異なるレベルの解像度で融合する,エンドツーエンド学習可能なアーキテクチャを設計した。
論文 参考訳(メタデータ) (2020-12-20T18:43:41Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
擬似LiDAR(PL)は、LiDARセンサに基づく手法と安価なステレオカメラに基づく手法の精度ギャップを劇的に減らした。
PLは最先端のディープニューラルネットワークと2D深度マップ出力を3Dポイントクラウド入力に変換することで3Dオブジェクト検出のための3D深度推定を組み合わせている。
我々は、PLパイプライン全体をエンドツーエンドにトレーニングできるように、差別化可能なRepresentation (CoR)モジュールに基づく新しいフレームワークを導入します。
論文 参考訳(メタデータ) (2020-04-07T02:18:38Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
ステレオ画像に基づく3D検出のためのZoomNetという新しいフレームワークを提案する。
ZoomNetのパイプラインは、通常の2Dオブジェクト検出モデルから始まり、左右のバウンディングボックスのペアを取得するために使用される。
さらに,RGB画像のテクスチャキューを多用し,より正確な異質度推定を行うため,適応ズームという概念的に真直ぐなモジュールを導入する。
論文 参考訳(メタデータ) (2020-03-01T17:18:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。