Manifold Metric: A Loss Landscape Approach for Predicting Model Performance
- URL: http://arxiv.org/abs/2405.15895v2
- Date: Mon, 16 Jun 2025 16:39:12 GMT
- Title: Manifold Metric: A Loss Landscape Approach for Predicting Model Performance
- Authors: Pranshu Malviya, Jerry Huang, Aristide Baratin, Quentin Fournier, Sarath Chandar,
- Abstract summary: We introduce a new perspective based on the loss landscape, which has been shown to contain a manifold of linearly connected minima.<n>Specifically, we propose a metric that estimates the size of this manifold to study the impact of model expansion.<n>Our experiments reveal a strong correlation between performance gains and our manifold metric, enabling more informed model comparison.
- Score: 10.738857454749981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determining the optimal model for a given task often requires training multiple models from scratch, which becomes impractical as dataset and model sizes grow. A more efficient alternative is to expand smaller pre-trained models, but this approach is underutilized due to a limited understanding of its impact on the training dynamics. Existing methods for quantifying this impact have notable limitations, including computation cost. To address this, we introduce a new perspective based on the loss landscape, which has been shown to contain a manifold of linearly connected minima. Specifically, we propose a metric that estimates the size of this manifold to study the impact of model expansion. Our experiments reveal a strong correlation between performance gains and our manifold metric, enabling more informed model comparison and offering a first step toward a geometry-driven approach for reliable model expansion. Notably, our metric outperforms other baselines, even when different types of expansion with equivalent number of parameters are applied to a model.
Related papers
- Why Do More Experts Fail? A Theoretical Analysis of Model Merging [51.18155031364046]
Model merging dramatically reduces storage and computational resources by combining multiple expert models into a single multi-task model.<n>Recent model merging methods have shown promising results, but struggle to maintain performance gains as the number of merged models increases.<n>We show that the limited effective parameter space imposes a strict constraint on the number of models that can be successfully merged.
arXiv Detail & Related papers (2025-05-27T14:10:46Z) - IDEA Prune: An Integrated Enlarge-and-Prune Pipeline in Generative Language Model Pretraining [50.53912352342753]
We propose an integrated enlarge-and-prune pipeline, which combines enlarge model training, pruning, and recovery.
We conduct experiments on compressing 2.8B models to 1.3B with up to 2T tokens in pretraining.
It demonstrates the integrated approach not only provides insights into the token efficiency of enlarged model pretraining but also achieves superior performance of pruned models.
arXiv Detail & Related papers (2025-03-07T20:35:31Z) - A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets.<n>We estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families.
arXiv Detail & Related papers (2024-10-15T17:59:10Z) - "Why" Has the Least Side Effect on Model Editing [25.67779910446609]
This paper delves into a critical factor-question type-by categorizing model editing questions.
Our findings reveal that the extent of performance degradation varies significantly across different question types.
We also examine the impact of batch size on side effects, discovering that increasing the batch size can mitigate performance drops.
arXiv Detail & Related papers (2024-09-27T12:05:12Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - FIARSE: Model-Heterogeneous Federated Learning via Importance-Aware Submodel Extraction [26.26211464623954]
Federated Importance-Aware Submodel Extraction (FIARSE) is a novel approach that dynamically adjusts submodels based on the importance of model parameters.<n>Compared to existing works, the proposed method offers a theoretical foundation for the submodel extraction.<n>Extensive experiments are conducted on various datasets to showcase the superior performance of the proposed FIARSE.
arXiv Detail & Related papers (2024-07-28T04:10:11Z) - Revisiting Catastrophic Forgetting in Large Language Model Tuning [79.70722658190097]
Catastrophic Forgetting (CF) means models forgetting previously acquired knowledge when learning new data.
This paper takes the first step to reveal the direct link between the flatness of the model loss landscape and the extent of CF in the field of large language models.
Experiments on three widely-used fine-tuning datasets, spanning different model scales, demonstrate the effectiveness of our method in alleviating CF.
arXiv Detail & Related papers (2024-06-07T11:09:13Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Improving Adversarial Transferability via Model Alignment [25.43899674478279]
We introduce a novel model alignment technique aimed at improving a given source model's ability in generating transferable adversarial perturbations.
Experiments on the ImageNet dataset, using a variety of model architectures, demonstrate that perturbations generated from aligned source models exhibit significantly higher transferability.
arXiv Detail & Related papers (2023-11-30T12:15:49Z) - On the Embedding Collapse when Scaling up Recommendation Models [53.66285358088788]
We identify the embedding collapse phenomenon as the inhibition of scalability, wherein the embedding matrix tends to occupy a low-dimensional subspace.
We propose a simple yet effective multi-embedding design incorporating embedding-set-specific interaction modules to learn embedding sets with large diversity.
arXiv Detail & Related papers (2023-10-06T17:50:38Z) - The Quest of Finding the Antidote to Sparse Double Descent [1.336445018915526]
As the model's sparsity increases, the performance first worsens, then improves, and finally deteriorates.
Such a non-monotonic behavior raises serious questions about the optimal model's size to maintain high performance.
We show that a simple $ell$ regularization method can help to mitigate this phenomenon but sacrifices the performance/sparsity.
arXiv Detail & Related papers (2023-08-31T09:56:40Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
Visual Prompting has emerged as a pivotal method for transfer learning in computer vision.
Model compression detrimentally impacts the performance of visual prompting-based transfer.
However, negative effects on calibration are not present when models are compressed via quantization.
arXiv Detail & Related papers (2023-08-29T01:47:49Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
Previous work on Transformers has focused on sharing parameters in different layers, which can improve the performance of models with limited parameters by increasing model depth.
We show that the success of this approach can be largely attributed to better convergence, with only a small part due to the increased model complexity.
Experiments on 8 machine translation tasks show that our model achieves competitive performance with only half the model complexity of parameter sharing models.
arXiv Detail & Related papers (2023-06-15T10:48:59Z) - Unlocking the Potential of Federated Learning for Deeper Models [24.875271131226707]
Federated learning (FL) is a new paradigm for distributed machine learning that allows a global model to be trained across multiple clients.
We propose several technical guidelines based on reducing divergence, such as using wider models and reducing the receptive field.
These approaches can greatly improve the accuracy of FL on deeper models.
arXiv Detail & Related papers (2023-06-05T08:45:44Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Distributional Depth-Based Estimation of Object Articulation Models [21.046351215949525]
We propose a method that efficiently learns distributions over articulation model parameters directly from depth images.
Our core contributions include a novel representation for distributions over rigid body transformations.
We introduce a novel deep learning based approach, DUST-net, that performs category-independent articulation model estimation.
arXiv Detail & Related papers (2021-08-12T17:44:51Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEE is a model-ensemble method that consists of optimistic exploration and weighted exploitation.
Our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
arXiv Detail & Related papers (2021-07-05T07:18:20Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
Black box models in machine learning have demonstrated excellent predictive performance in complex problems and high-dimensional settings.
Their lack of transparency and interpretability restrict the applicability of such models in critical decision-making processes.
We propose a novel approach to trading off interpretability and performance in prediction models using ideas from semiparametric statistics.
arXiv Detail & Related papers (2020-06-08T16:38:15Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.