Wearable-based behaviour interpolation for semi-supervised human activity recognition
- URL: http://arxiv.org/abs/2405.15962v1
- Date: Fri, 24 May 2024 22:21:24 GMT
- Title: Wearable-based behaviour interpolation for semi-supervised human activity recognition
- Authors: Haoran Duan, Shidong Wang, Varun Ojha, Shizheng Wang, Yawen Huang, Yang Long, Rajiv Ranjan, Yefeng Zheng,
- Abstract summary: We introduce a deep semi-supervised Human Activity Recognition (HAR) approach, MixHAR, which concurrently uses labelled and unlabelled activities.
Our results demonstrate that MixHAR significantly improves performance, underscoring the potential of deep semi-supervised techniques in HAR.
- Score: 27.895342617584085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While traditional feature engineering for Human Activity Recognition (HAR) involves a trial-anderror process, deep learning has emerged as a preferred method for high-level representations of sensor-based human activities. However, most deep learning-based HAR requires a large amount of labelled data and extracting HAR features from unlabelled data for effective deep learning training remains challenging. We, therefore, introduce a deep semi-supervised HAR approach, MixHAR, which concurrently uses labelled and unlabelled activities. Our MixHAR employs a linear interpolation mechanism to blend labelled and unlabelled activities while addressing both inter- and intra-activity variability. A unique challenge identified is the activityintrusion problem during mixing, for which we propose a mixing calibration mechanism to mitigate it in the feature embedding space. Additionally, we rigorously explored and evaluated the five conventional/popular deep semi-supervised technologies on HAR, acting as the benchmark of deep semi-supervised HAR. Our results demonstrate that MixHAR significantly improves performance, underscoring the potential of deep semi-supervised techniques in HAR.
Related papers
- VCHAR:Variance-Driven Complex Human Activity Recognition framework with Generative Representation [6.278293754210117]
VCHAR (Variance-Driven Complex Human Activity Recognition) is a novel framework that treats the outputs of atomic activities as a distribution over specified intervals.
We show that VCHAR enhances the accuracy of complex activity recognition without necessitating precise temporal or sequential labeling of atomic activities.
arXiv Detail & Related papers (2024-07-03T17:24:36Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration.
Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks.
arXiv Detail & Related papers (2024-02-22T13:22:06Z) - Efficient Deep Clustering of Human Activities and How to Improve
Evaluation [53.08810276824894]
We present a new deep clustering model for human activity re-cog-ni-tion (HAR)
In this paper, we highlight several distinct problems with how deep HAR clustering models are evaluated.
We then discuss solutions to these problems, and suggest standard evaluation settings for future deep HAR clustering models.
arXiv Detail & Related papers (2022-09-17T14:12:42Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - Multi-level Contrast Network for Wearables-based Joint Activity
Segmentation and Recognition [10.828099015828693]
Human activity recognition (HAR) with wearables is promising research that can be widely adopted in many smart healthcare applications.
Most HAR algorithms are susceptible to the multi-class windows problem that is essential yet rarely exploited.
We introduce the segmentation technology into HAR, yielding joint activity segmentation and recognition.
arXiv Detail & Related papers (2022-08-16T05:39:02Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially on rare classes.
arXiv Detail & Related papers (2021-09-09T06:02:50Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
A common problem in human-object interaction (HOI) detection task is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially in rare classes.
arXiv Detail & Related papers (2020-07-17T02:47:45Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
We propose a novel end-to-end knowledge directed adversarial learning framework.
It portrays the class-conditioned intraclass disparity using two competitive encoding distributions and learns the purified latent codes by denoising learned disparity.
The experiments on four HAR benchmark datasets demonstrate the robustness and generalization of our proposed methods over a set of state-of-the-art.
arXiv Detail & Related papers (2020-07-14T05:46:27Z) - A Deep Learning Method for Complex Human Activity Recognition Using
Virtual Wearable Sensors [22.923108537119685]
Sensor-based human activity recognition (HAR) is now a research hotspot in multiple application areas.
We propose a novel method based on deep learning for complex HAR in the real-scene.
The proposed method can surprisingly converge in a few iterations and achieve an accuracy of 91.15% on a real IMU dataset.
arXiv Detail & Related papers (2020-03-04T03:31:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.