論文の概要: Modes of Analyzing Disinformation Narratives With AI/ML/Text Mining to Assist in Mitigating the Weaponization of Social Media
- arxiv url: http://arxiv.org/abs/2405.15987v1
- Date: Sat, 25 May 2024 00:02:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 01:39:22.752990
- Title: Modes of Analyzing Disinformation Narratives With AI/ML/Text Mining to Assist in Mitigating the Weaponization of Social Media
- Title(参考訳): AI/ML/テキストマイニングによる偽情報ナラティブの分析方法 : ソーシャルメディアの弱体化の軽減をめざして
- Authors: Andy Skumanich, Han Kyul Kim,
- Abstract要約: 本稿では,ソーシャルメディアにおける悪意あるコミュニケーションを捕捉・監視するための定量的モードの必要性を明らかにする。
ソーシャル・ネットワークを利用したメッセージの「ウェポン化」が意図的に行われており、州が後援し、私的に運営される政治的指向のエンティティも含む。
FacebookやX/Twitterのような主要プラットフォームにモデレーションを導入しようとする試みにもかかわらず、完全にモデレートされていないスペースを提供する代替ソーシャルネットワークが現在確立されている。
- 参考スコア(独自算出の注目度): 0.8287206589886879
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper highlights the developing need for quantitative modes for capturing and monitoring malicious communication in social media. There has been a deliberate "weaponization" of messaging through the use of social networks including by politically oriented entities both state sponsored and privately run. The article identifies a use of AI/ML characterization of generalized "mal-info," a broad term which includes deliberate malicious narratives similar with hate speech, which adversely impact society. A key point of the discussion is that this mal-info will dramatically increase in volume, and it will become essential for sharable quantifying tools to provide support for human expert intervention. Despite attempts to introduce moderation on major platforms like Facebook and X/Twitter, there are now established alternative social networks that offer completely unmoderated spaces. The paper presents an introduction to these platforms and the initial results of a qualitative and semi-quantitative analysis of characteristic mal-info posts. The authors perform a rudimentary text mining function for a preliminary characterization in order to evaluate the modes for better-automated monitoring. The action examines several inflammatory terms using text analysis and, importantly, discusses the use of generative algorithms by one political agent in particular, providing some examples of the potential risks to society. This latter is of grave concern, and monitoring tools must be established. This paper presents a preliminary step to selecting relevant sources and to setting a foundation for characterizing the mal-info, which must be monitored. The AI/ML methods provide a means for semi-quantitative signature capture. The impending use of "mal-GenAI" is presented.
- Abstract(参考訳): 本稿では,ソーシャルメディアにおける悪意あるコミュニケーションを捕捉・監視するための定量的モードの必要性を明らかにする。
ソーシャル・ネットワークを利用したメッセージの「ウェポン化」が意図的に行われており、州が後援し、私的に運営される政治的指向のエンティティも含む。
記事は、ヘイトスピーチに類似した意図的な悪意のある物語を包含し、社会に悪影響を及ぼす、一般化された"mal-info"のAI/ML特徴の使用を特定する。
この議論の重要なポイントは、このモル-infoが体積を劇的に増加させ、人間の専門家の介入を支援するために、有能な定量化ツールが不可欠になるということだ。
FacebookやX/Twitterのような主要プラットフォームにモデレーションを導入しようとする試みにもかかわらず、現在では完全にモデレートされていないスペースを提供する代替ソーシャルネットワークが確立されている。
本稿では,これらのプラットフォームについて紹介し,特徴的マル・インフォポストの質的および半定量的解析の結果について述べる。
筆者らは, 予備評価のための初歩的なテキストマイニング機能を実行し, より自動化されたモニタリングの態様を評価する。
この行動は、テキスト分析を用いていくつかの炎症用語を調べ、特に、ある政治エージェントによる生成アルゴリズムの使用について議論し、社会への潜在的なリスクのいくつかの例を提供する。
後者は重大な問題であり、監視ツールを確立する必要がある。
本稿では、関連するソースを選択するための予備的なステップと、監視が必要なmal-infoを特徴付けるための基盤を設定する。
AI/ML法は半定量的シグネチャキャプチャの手段を提供する。
近日中の「mal-GenAI」の使用について紹介する。
関連論文リスト
- Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
オンラインソーシャルメディア上で政治的分極を特徴付ける機械学習モデルを開発することは、大きな課題である。
これらの課題は主に、注釈付きデータの欠如、ソーシャルメディアデータセットにおけるノイズの存在、膨大な量のデータなど、さまざまな要因に起因している。
本稿では、ソーシャルメディア投稿のラベル付けに、メディアバイアスと投稿コンテンツを活用する2つの方法を紹介する。
ソーシャルメディア投稿の政治的指向を予測することで,現在の機械学習モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2023-11-21T03:34:20Z) - Countering Misinformation via Emotional Response Generation [15.383062216223971]
ソーシャルメディアプラットフォーム(SMP)における誤情報拡散は、公衆衛生、社会的結束、民主主義に重大な危険をもたらす。
これまでの研究では、社会的訂正が誤情報を抑制する効果的な方法であることが示された。
約1万のクレーム応答対からなる最初の大規模データセットであるVerMouthを提案する。
論文 参考訳(メタデータ) (2023-11-17T15:37:18Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Qualitative Analysis of a Graph Transformer Approach to Addressing Hate
Speech: Adapting to Dynamically Changing Content [8.393770595114763]
我々は、ソーシャルネットワークにおけるヘイトスピーチ検出のために、このソリューションの詳細な質的分析を提供する。
重要な洞察は、コンテキストの概念に関する推論に焦点が当てられていることは、オンライン投稿のマルチモーダル分析をサポートするのに十分な位置にあるということだ。
この問題が特に動的変化のテーマとどのように関係しているかを考察して結論付けます。
論文 参考訳(メタデータ) (2023-01-25T23:32:32Z) - A Keyword Based Approach to Understanding the Overpenalization of
Marginalized Groups by English Marginal Abuse Models on Twitter [2.9604738405097333]
有害なコンテンツ検出モデルは、疎外されたグループからのコンテンツに対する偽陽性率が高い傾向にある。
テキストベースモデルに関連付けられた潜在的害の重症度を検出・測定するための原則的アプローチを提案する。
提案手法を適用して,Twitterの英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・日本語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語・英語
論文 参考訳(メタデータ) (2022-10-07T20:28:00Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
著者らは新メディアにおける利用者の相互影響の可能性を検討した。
新型コロナウイルス(COVID-19)対策として、緊急の社会問題について議論する際、攻撃やヘイトスピーチのレベルが高いことが分かった。
結果は、現代のデジタル環境におけるメディアコンテンツの開発に有用である。
論文 参考訳(メタデータ) (2022-08-25T15:53:32Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Towards Socially Intelligent Agents with Mental State Transition and
Human Utility [97.01430011496576]
対話エージェントに精神状態と実用性モデルを取り入れることを提案する。
ハイブリッド精神状態は、対話とイベント観察の両方から情報を抽出する。
ユーティリティモデルは、クラウドソースのソーシャルコモンセンスデータセットから人間の好みを学習するランキングモデルである。
論文 参考訳(メタデータ) (2021-03-12T00:06:51Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。