論文の概要: Feature Protection For Out-of-distribution Generalization
- arxiv url: http://arxiv.org/abs/2405.16027v1
- Date: Sat, 25 May 2024 03:00:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 01:29:38.759973
- Title: Feature Protection For Out-of-distribution Generalization
- Title(参考訳): アウト・オブ・ディストリビューションの一般化のための特徴的保護
- Authors: Lu Tan, Huei Zhou, Yinxiang Huang, Zeming Zheng, Yujiu Yang,
- Abstract要約: 事前訓練された特徴の保護は、より厳密に調整されたモデルが一般化に結びつくことを示す。
事前訓練された特徴の保護は,OODの一般化に対してより堅牢な微調整モデルをもたらすことを示す。
- 参考スコア(独自算出の注目度): 24.072876186625855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the availability of large pre-trained models, a modern workflow for building real-world machine learning solutions is to fine-tune such models on a downstream task with a relatively small domain-specific dataset. In such applications, one major challenge is that the small fine-tuning dataset does not have sufficient coverage of the distribution encountered when the model is deployed. It is thus important to design fine-tuning methods that are robust to out-of-distribution (OOD) data that are under-represented by the training data. This paper compares common fine-tuning methods to investigate their OOD performance and demonstrates that standard methods will result in a significant change to the pre-trained model so that the fine-tuned features overfit the fine-tuning dataset. However, this causes deteriorated OOD performance. To overcome this issue, we show that protecting pre-trained features leads to a fine-tuned model more robust to OOD generalization. We validate the feature protection methods with extensive experiments of fine-tuning CLIP on ImageNet and DomainNet.
- Abstract(参考訳): 大規模な事前トレーニングモデルの可用性により、現実世界の機械学習ソリューションを構築するための現代的なワークフローは、比較的小さなドメイン固有のデータセットで下流タスクでそのようなモデルを微調整することである。
このようなアプリケーションでは、小さな微調整データセットがモデルがデプロイされたときに発生する分布について十分なカバレッジを持っていないことが大きな課題である。
したがって、トレーニングデータで表現されていないOOD(out-of-distriion)データに対して堅牢な微調整手法を設計することが重要である。
本稿では,OODの性能を調べるための一般的な微調整手法を比較し,標準手法が事前学習モデルに大きな変化をもたらすことを示し,微調整された特徴が微調整データセットに収まることを示した。
しかし、これはOOD性能を悪化させた。
この問題を克服するために、事前訓練された特徴の保護は、OOD一般化に対してより堅牢な微調整モデルをもたらすことを示す。
我々は,ImageNetとDomainNet上での細調整CLIPの広範な実験により特徴保護手法を検証する。
関連論文リスト
- Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views [28.081794908107604]
ファインチューニングは、新しい下流タスクで事前訓練された基礎モデルのパワーを活用するために使用される。
近年の研究では、微調整されたモデルから目に見えない分布への一般化の課題が観察されている。
そこで本研究では,タスク固有モデルを用いて,事前学習したモデルを階層的に適応的に組み立てる,一般化可能なファインチューニング手法LEVIを提案する。
論文 参考訳(メタデータ) (2024-02-07T08:16:40Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
本稿では,特徴識別アライメント(FD-Align)と呼ばれる微調整手法を提案する。
本手法は,突発的特徴の一貫性を保ち,モデルの一般化可能性を高めることを目的としている。
一度微調整すると、モデルは既存のメソッドとシームレスに統合され、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-23T17:12:01Z) - Efficiently Robustify Pre-trained Models [18.392732966487582]
大規模モデルの現実的な設定に対する堅牢性は、いまだ探索されていないトピックである。
まず、異なる摂動とデータセットの下でこれらのモデルのパフォーマンスをベンチマークします。
続いて、大規模ネットワークにおいて、モデルファインチューニングに基づく既存のロバスト化スキームが拡張性に欠ける可能性について論じる。
論文 参考訳(メタデータ) (2023-09-14T08:07:49Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Prototypical Fine-tuning: Towards Robust Performance Under Varying Data
Sizes [47.880781811936345]
我々は、微調整事前学習言語モデル(LM)のための新しいフレームワークを提案する。
提案手法は,データポイント数やモデル固有の属性に応じて,モデルキャパシティを自動的に調整することができる。
論文 参考訳(メタデータ) (2022-11-24T14:38:08Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
サンプル効率(所定のID精度に到達するために必要なデータ量)とロバスト性(OOD評価モデルの評価方法)の関係について検討する。
高いサンプル効率は、いくつかのモデリング介入やタスクにおいて、より平均的なOODロバスト性にのみ相関するが、それ以外は相関しない。
これらの結果から,サンプル効率向上のための汎用手法は,データセットとタスクに依存した汎用的なOODロバスト性向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-10-12T17:54:59Z) - SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models [58.78043959556283]
本研究は,Low-Rank Adaptation (LoRA)ファインチューニング手法を含む,異なる微調整手法によるモデルの挙動について検討する。
解析の結果、LoRAファインチューニングは様々なシナリオにおけるフルファインチューニングよりも、OODの一般化性能が大幅に向上していることが判明した。
論文 参考訳(メタデータ) (2022-10-10T16:07:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。