論文の概要: Explainable Molecular Property Prediction: Aligning Chemical Concepts with Predictions via Language Models
- arxiv url: http://arxiv.org/abs/2405.16041v3
- Date: Wed, 02 Oct 2024 03:52:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-03 15:18:02.654568
- Title: Explainable Molecular Property Prediction: Aligning Chemical Concepts with Predictions via Language Models
- Title(参考訳): 説明可能な分子特性予測:言語モデルによる予測を伴う化学概念の調整
- Authors: Zhenzhong Wang, Zehui Lin, Wanyu Lin, Ming Yang, Minggang Zeng, Kay Chen Tan,
- Abstract要約: 言語モデルに基づく分子特性予測のためのフレームワークを開発し,これをLamoleと呼ぶ。
文字列ベースの分子表現 -- Group SELFIES -- を入力トークンとして、事前にトレーニングし、Lamoleを微調整します。
我々はLamoleが同等の分類精度を達成でき、説明精度を最大14.3%向上させることができることを示した。
- 参考スコア(独自算出の注目度): 26.838674632817877
- License:
- Abstract: Providing explainable molecular property predictions is critical for many scientific domains, such as drug discovery and material science. Though transformer-based language models have shown great potential in accurate molecular property prediction, they neither provide chemically meaningful explanations nor faithfully reveal the molecular structure-property relationships. In this work, we develop a framework for explainable molecular property prediction based on language models, dubbed as Lamole, which can provide chemical concepts-aligned explanations. We take a string-based molecular representation -- Group SELFIES -- as input tokens to pretrain and fine-tune our Lamole, as it provides chemically meaningful semantics. By disentangling the information flows of Lamole, we propose combining self-attention weights and gradients for better quantification of each chemically meaningful substructure's impact on the model's output. To make the explanations more faithfully respect the structure-property relationship, we then carefully craft a marginal loss to explicitly optimize the explanations to be able to align with the chemists' annotations. We bridge the manifold hypothesis with the elaborated marginal loss to prove that the loss can align the explanations with the tangent space of the data manifold, leading to concept-aligned explanations. Experimental results over six mutagenicity datasets and one hepatotoxicity dataset demonstrate Lamole can achieve comparable classification accuracy and boost the explanation accuracy by up to 14.3%, being the state-of-the-art in explainable molecular property prediction.
- Abstract(参考訳): 説明可能な分子特性予測を提供することは、薬物発見や物質科学など、多くの科学分野において重要である。
トランスフォーマーに基づく言語モデルは、正確な分子特性予測に大きな可能性を示しているが、化学的に意味のある説明や、分子構造と固有性の関係を忠実に明らかにするものではない。
本研究では,Lamoleと呼ばれる言語モデルに基づく分子特性予測のためのフレームワークを開発し,化学概念に整合した説明を提供する。
我々は、化学的に意味のある意味論を提供するため、文字列ベースの分子表現 -- Group SELFIES -- を入力トークンとして、Lamoleを事前訓練し、微調整する。
ラモールの情報の流れを遠ざけることで、各化学的に有意なサブ構造がモデル出力に与える影響をより正確に定量化するために、自己注意重みと勾配を組み合わせることを提案する。
構造的優位性関係をより忠実に尊重するために、我々は、化学者のアノテーションに合わせることができるように説明を明示的に最適化するために、余分な損失を慎重に作っていきます。
我々は、データ多様体の接空間と説明が一致できることを証明するために、多様体の仮説を精巧な限界損失で橋渡しし、概念的に整合した説明をもたらす。
6つの変異原性データセットと1つの肝毒性データセットに対する実験結果から、ラモールは同等の分類精度を達成でき、説明精度を14.3%向上させることができる。
関連論文リスト
- FragNet: A Graph Neural Network for Molecular Property Prediction with Four Layers of Interpretability [0.7499722271664147]
本稿では,現在の最先端モデルに匹敵する予測精度を達成可能なグラフニューラルネットワークであるFragNetアーキテクチャを紹介する。
このモデルにより、どの原子、共有結合、分子断片、分子フラグメント結合が与えられた分子特性の予測に重要なのかを理解することができる。
FragNetの解釈能力は、分子構造と分子特性の間の学習パターンから科学的洞察を得るための鍵となる。
論文 参考訳(メタデータ) (2024-10-16T01:37:01Z) - Atom-Motif Contrastive Transformer for Molecular Property Prediction [68.85399466928976]
グラフトランス (GT) モデルは分子特性予測 (MPP) のタスクで広く利用されている。
本稿では,原子レベルの相互作用を探索し,モチーフレベルの相互作用を考慮した新しいAtom-Motif Contrastive Transformer(AMCT)を提案する。
提案したAMCTは,7つの一般的なベンチマークデータセットに対して広範囲に評価され,定量的および定性的な結果の両方が有効であることを示す。
論文 参考訳(メタデータ) (2023-10-11T10:03:10Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
対象分子を記述・編集するための自然言語を用いた対話型分子設計を提案する。
この課題をより良くするために、実験プロパティ情報を注入することによって強化された知識的で汎用的な生成事前学習モデルChatMolを設計する。
論文 参考訳(メタデータ) (2023-06-21T02:05:48Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Property-aware Adaptive Relation Networks for Molecular Property
Prediction [34.13439007658925]
分子特性予測問題に対する特性認識適応関係ネットワーク(PAR)を提案する。
我々のPARは、既存のグラフベースの分子エンコーダと互換性があり、プロパティ対応分子埋め込みとモデル分子関係グラフを得る能力も備えている。
論文 参考訳(メタデータ) (2021-07-16T16:22:30Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z) - MEG: Generating Molecular Counterfactual Explanations for Deep Graph
Networks [11.291571222801027]
本稿では, 分子特性予測 t の文脈における深層グラフネットワークの説明可能性に取り組むための新しいアプローチを提案する。
我々は, 構造的類似度が高く, 予測特性の異なる(有意)化合物の形で, 特定の予測に対する情報的反実的説明を生成する。
モデルが非ML専門家に分子の近傍に焦点を絞った学習モデルに関する重要な洞察を伝達する方法を示す結果について議論する。
論文 参考訳(メタデータ) (2021-04-16T12:17:19Z) - Explaining Deep Graph Networks with Molecular Counterfactuals [11.460692362624533]
本稿では,分子特性予測タスク(MEG)の文脈におけるディープグラフネットワークの説明可能性に挑戦する新しい手法を提案する。
我々は, 構造的類似度が高く, 予測特性の異なる(有意)化合物の形で, 特定の予測に対する情報的反実的説明を生成する。
論文 参考訳(メタデータ) (2020-11-09T13:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。