論文の概要: Unsupervised Meta-Learning via In-Context Learning
- arxiv url: http://arxiv.org/abs/2405.16124v2
- Date: Tue, 01 Oct 2024 06:29:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:32:02.817770
- Title: Unsupervised Meta-Learning via In-Context Learning
- Title(参考訳): インテクスト学習による教師なしメタラーニング
- Authors: Anna Vettoruzzo, Lorenzo Braccaioli, Joaquin Vanschoren, Marlena Nowaczyk,
- Abstract要約: 本稿では,教師なしメタ学習における教師なしメタ学習の一般化能力を活用した新しい手法を提案する。
提案手法は,メタラーニングをシーケンスモデリング問題として再設計し,トランスフォーマーエンコーダがサポート画像からタスクコンテキストを学習できるようにする。
- 参考スコア(独自算出の注目度): 3.4165401459803335
- License:
- Abstract: Unsupervised meta-learning aims to learn feature representations from unsupervised datasets that can transfer to downstream tasks with limited labeled data. In this paper, we propose a novel approach to unsupervised meta-learning that leverages the generalization abilities of in-context learning observed in transformer architectures. Our method reframes meta-learning as a sequence modeling problem, enabling the transformer encoder to learn task context from support images and utilize it to predict query images. At the core of our approach lies the creation of diverse tasks generated using a combination of data augmentations and a mixing strategy that challenges the model during training while fostering generalization to unseen tasks at test time. Experimental results on benchmark datasets showcase the superiority of our approach over existing unsupervised meta-learning baselines, establishing it as the new state-of-the-art in the field. Remarkably, our method achieves competitive results with supervised and self-supervised approaches, underscoring the efficacy of the model in leveraging generalization over memorization.
- Abstract(参考訳): 教師なしメタラーニングは、ラベル付き限られたデータで下流タスクに転送できる教師なしデータセットから特徴表現を学習することを目的としている。
本稿では,トランスフォーマーアーキテクチャで観測される文脈内学習の一般化能力を活用する,教師なしメタラーニングの新たなアプローチを提案する。
提案手法は, メタラーニングをシーケンスモデリング問題として再設計し, トランスフォーマーエンコーダがサポート画像からタスクコンテキストを学習し, クエリ画像の予測に利用できるようにする。
このアプローチの核心にあるのは、データ拡張と、トレーニング中にモデルに挑戦し、テスト時に見えないタスクに一般化を奨励するミキシング戦略を組み合わせた、多様なタスクの生成です。
ベンチマークデータセットの実験結果から、既存の教師なしメタラーニングベースラインよりもアプローチが優れていることが示され、この分野における新しい最先端技術として確立された。
注意すべき点として,本手法は,教師付きおよび自己教師型アプローチによる競合的な結果を達成し,メモリ化よりも一般化を活用できるモデルの有効性を裏付けるものである。
関連論文リスト
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
本稿では,視覚に基づく制御ポリシを用いて,ロバストな閉ループ性能を実現するために必要な最小限のデータ要件とアーキテクチャ適応について検討する。
この知見はFlex (Fly-lexically) で合成され,VLM(Vision Language Models) をフリーズしたパッチワイド特徴抽出器として利用するフレームワークである。
本研究では,本手法が4段階のフライ・トゥ・ターゲットタスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2024-10-16T19:59:31Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - Continual Learning From Unlabeled Data Via Deep Clustering [7.704949298975352]
継続的学習は、新しいタスクが到着するたびにモデルをスクラッチから再トレーニングするのではなく、少ない計算とメモリリソースを使って、新しいタスクをインクリメンタルに学習することを目的としている。
クラスタ割り当てから得られた擬似ラベルをモデル更新に用いて,教師なしモードで継続的学習を実現する新たなフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-14T23:46:17Z) - On Data Efficiency of Meta-learning [17.739215706060605]
私たちは、現代のメタ学習アルゴリズムの見落とされがちな側面、すなわちそのデータ効率を研究します。
本稿では,メタラーニング手法を評価するための新しいシンプルなフレームワークを提案する。
本稿では,アクティブなデータ選択を学習学習に取り入れたアクティブなメタラーニングを提案する。
論文 参考訳(メタデータ) (2021-01-30T01:44:12Z) - Self-Supervised Prototypical Transfer Learning for Few-Shot
Classification [11.96734018295146]
自己教師ありトランスファー学習アプローチ ProtoTransferは、数ショットタスクにおいて、最先端の教師なしメタラーニング手法より優れている。
ドメインシフトを用いた数ショットの実験では、我々のアプローチは教師付きメソッドに匹敵する性能を持つが、ラベルの桁数は桁違いである。
論文 参考訳(メタデータ) (2020-06-19T19:00:11Z) - Unsupervised Meta-Learning through Latent-Space Interpolation in
Generative Models [11.943374020641214]
生成モデルを用いてメタタスクを生成する手法について述べる。
提案手法であるLAtent Space Interpolation Unsupervised Meta-learning (LASium)が,現在の教師なし学習ベースラインよりも優れているか,あるいは競合していることがわかった。
論文 参考訳(メタデータ) (2020-06-18T02:10:56Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
メタラーニングと従来の教師付き学習の関連性を再考し,強化することで,原則的,統一的なフレームワークの提供を目指す。
タスク固有のデータセットとターゲットモデルを(機能、ラベル)サンプルとして扱うことで、多くのメタ学習アルゴリズムを教師付き学習のインスタンスに還元することができる。
この視点は、メタラーニングを直感的で実践的なフレームワークに統一するだけでなく、教師付き学習から直接洞察を伝達してメタラーニングを改善することができる。
論文 参考訳(メタデータ) (2020-02-03T06:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。