論文の概要: Self-Supervised Prototypical Transfer Learning for Few-Shot
Classification
- arxiv url: http://arxiv.org/abs/2006.11325v1
- Date: Fri, 19 Jun 2020 19:00:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 03:30:53.734570
- Title: Self-Supervised Prototypical Transfer Learning for Few-Shot
Classification
- Title(参考訳): Few-Shot分類のための自己教師付きプロトタイプトランスファー学習
- Authors: Carlos Medina, Arnout Devos, Matthias Grossglauser
- Abstract要約: 自己教師ありトランスファー学習アプローチ ProtoTransferは、数ショットタスクにおいて、最先端の教師なしメタラーニング手法より優れている。
ドメインシフトを用いた数ショットの実験では、我々のアプローチは教師付きメソッドに匹敵する性能を持つが、ラベルの桁数は桁違いである。
- 参考スコア(独自算出の注目度): 11.96734018295146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most approaches in few-shot learning rely on costly annotated data related to
the goal task domain during (pre-)training. Recently, unsupervised
meta-learning methods have exchanged the annotation requirement for a reduction
in few-shot classification performance. Simultaneously, in settings with
realistic domain shift, common transfer learning has been shown to outperform
supervised meta-learning. Building on these insights and on advances in
self-supervised learning, we propose a transfer learning approach which
constructs a metric embedding that clusters unlabeled prototypical samples and
their augmentations closely together. This pre-trained embedding is a starting
point for few-shot classification by summarizing class clusters and
fine-tuning. We demonstrate that our self-supervised prototypical transfer
learning approach ProtoTransfer outperforms state-of-the-art unsupervised
meta-learning methods on few-shot tasks from the mini-ImageNet dataset. In
few-shot experiments with domain shift, our approach even has comparable
performance to supervised methods, but requires orders of magnitude fewer
labels.
- Abstract(参考訳): 少数ショット学習のほとんどのアプローチは、(事前)トレーニング中の目標タスクドメインに関連する高価な注釈付きデータに依存している。
近年,教師なしメタラーニング手法は,数発の分類性能の低下に対するアノテーション要件を交換している。
同時に、現実的なドメインシフトを伴う設定において、共通の転送学習は教師付きメタラーニングよりも優れていることが示されている。
そこで,これらの知見と自己教師あり学習の進歩に基づいて,ラベルのない原型標本とそれらの拡張を密に結合した計量埋め込みを構築するトランスファー学習手法を提案する。
この事前学習された埋め込みは、クラスクラスタと微調整を要約することで、少数ショットの分類の出発点となる。
我々は,ProtoTransferによる自己教師付きプロトタイプトランスファー学習手法が,Mini-ImageNetデータセットからの少数ショットタスクにおいて,最先端の教師なしメタラーニング手法より優れていることを示す。
ドメインシフトを用いた数ショットの実験では、我々のアプローチは教師付きメソッドに匹敵する性能を持つが、ラベルの桁数は桁違いである。
関連論文リスト
- GenCo: An Auxiliary Generator from Contrastive Learning for Enhanced
Few-Shot Learning in Remote Sensing [9.504503675097137]
我々は、バックボーンを事前訓練し、同時に特徴サンプルの変種を探索するジェネレータベースのコントラスト学習フレームワーク(GenCo)を導入する。
微調整では、補助ジェネレータを使用して、特徴空間内の限られたラベル付きデータサンプルを濃縮することができる。
本稿では,2つの重要なリモートセンシングデータセットにおいて,この手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-27T03:59:19Z) - Unsupervised Meta-Learning via Few-shot Pseudo-supervised Contrastive
Learning [72.3506897990639]
本稿では,Pseudo-supervised Contrast (PsCo) という,シンプルだが効果的なメタ学習フレームワークを提案する。
PsCoは、さまざまなドメイン内およびクロスドメインのいくつかのショット分類ベンチマークの下で、既存の教師なしメタラーニングメソッドより優れています。
論文 参考訳(メタデータ) (2023-03-02T06:10:13Z) - Simple Control Baselines for Evaluating Transfer Learning [1.0499611180329802]
我々は,伝達学習のパフォーマンスを定量化し,伝達することを目的とした評価基準を共有している。
自己教師型学習に関するいくつかの基本的な質問について,実証的研究を例に紹介する。
論文 参考訳(メタデータ) (2022-02-07T17:26:26Z) - Trainable Class Prototypes for Few-Shot Learning [5.481942307939029]
本稿では,メタトレーニングとタスクトレーニングの枠組みにおいて,距離測定のためのトレーニング可能なプロトタイプを提案する。
また, エピソードなメタトレーニングがもたらした欠点を避けるために, 自己教師型学習に基づく非エピソードなメタトレーニングを採用する。
本手法は,標準的な数ショットの視覚的分類データセット上で,多数の確立された数ショットタスクにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-06-21T04:19:56Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
2つの新しい構成要素からなるプロトタイプ中心型注意学習(pal)モデル。
まず,従来のクエリ中心学習目標を補完するために,プロトタイプ中心のコントラスト学習損失を導入する。
第二に、PALは注意深いハイブリッド学習機構を統合しており、アウトレーヤの負の影響を最小限に抑えることができる。
論文 参考訳(メタデータ) (2021-01-20T11:48:12Z) - A Survey on Contrastive Self-supervised Learning [0.0]
自己教師付き学習は、大規模なデータセットのアノテートコストを回避する能力によって人気を集めている。
コントラスト学習は近年,コンピュータビジョン,自然言語処理(NLP)などの分野において,自己指導型学習手法の主流となっている。
本稿では, コントラスト的アプローチに従う自己教師型手法について, 広範囲にわたるレビューを行う。
論文 参考訳(メタデータ) (2020-10-31T21:05:04Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
我々は、教師なし学習されたモデルの動物園から別のネットワークへ知識を伝達する方法を研究する。
私たちのモチベーションは、モデルは異なるソースからの複雑なダイナミクスを理解することが期待されていることです。
提案手法は,時間的予測のための3つのベンチマークで大幅に改善され,重要度が低いベンチマークであっても,ターゲットのメリットが得られた。
論文 参考訳(メタデータ) (2020-09-24T15:40:55Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
少ないショットラーニングは、テスト時に少数のサンプルしか持たない、新しいカテゴリに迅速に適応することを目的としている。
本稿では,より困難なシナリオ,すなわちクロスグラニュラリティ・グラニュラリティ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラ
画像埋め込みの類似性に応じて,各粗いクラスを擬似微細クラスにグリーディクラスタリングすることで,詳細なデータ分布を近似する。
論文 参考訳(メタデータ) (2020-07-11T03:44:21Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。