論文の概要: Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity
- arxiv url: http://arxiv.org/abs/2405.16126v1
- Date: Sat, 25 May 2024 08:34:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 00:50:39.566639
- Title: Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity
- Title(参考訳): 2次類似性を考慮したニア最適分散ミニマックス最適化
- Authors: Qihao Zhou, Haishan Ye, Luo Luo,
- Abstract要約: 本研究では,有限サム構造を目的とする分散楽観的すべり(SVOGS)法を提案する。
我々は$mathcal O(delta D2/varepsilon)$、$mathcal O(n+sqrtndelta D2/varepsilon)$、$tildemathcal O(n+sqrtndelta+L)D2/varepsilon)$の局所呼び出しを証明している。
- 参考スコア(独自算出の注目度): 22.615156512223763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the distributed convex-concave minimax optimization under the second-order similarity. We propose stochastic variance-reduced optimistic gradient sliding (SVOGS) method, which takes the advantage of the finite-sum structure in the objective by involving the mini-batch client sampling and variance reduction. We prove SVOGS can achieve the $\varepsilon$-duality gap within communication rounds of ${\mathcal O}(\delta D^2/\varepsilon)$, communication complexity of ${\mathcal O}(n+\sqrt{n}\delta D^2/\varepsilon)$, and local gradient calls of $\tilde{\mathcal O}(n+(\sqrt{n}\delta+L)D^2/\varepsilon\log(1/\varepsilon))$, where $n$ is the number of nodes, $\delta$ is the degree of the second-order similarity, $L$ is the smoothness parameter and $D$ is the diameter of the constraint set. We can verify that all of above complexity (nearly) matches the corresponding lower bounds. For the specific $\mu$-strongly-convex-$\mu$-strongly-convex case, our algorithm has the upper bounds on communication rounds, communication complexity, and local gradient calls of $\mathcal O(\delta/\mu\log(1/\varepsilon))$, ${\mathcal O}((n+\sqrt{n}\delta/\mu)\log(1/\varepsilon))$, and $\tilde{\mathcal O}(n+(\sqrt{n}\delta+L)/\mu)\log(1/\varepsilon))$ respectively, which are also nearly tight. Furthermore, we conduct the numerical experiments to show the empirical advantages of proposed method.
- Abstract(参考訳): 本稿では,2次類似性に基づく分散凸凹型最小値最適化について考察する。
SVOGS法は, 有限サム構造を目的とし, 最小バッチクライアントサンプリングと分散低減を両立させることにより, 確率的分散誘導型楽観的勾配スライディング(SVOGS)法を提案する。
SVOGS は${\mathcal O}(\delta D^2/\varepsilon)$, ${\mathcal O}(n+\sqrt{n}\delta D^2/\varepsilon)$, $\tilde{\mathcal O}(n+(\sqrt{n}\delta+L)D^2/\varepsilon\log(1/\varepsilon)$, $n$ はノード数、$\delta$ は2次類似性の次数、$L$ は滑らかなパラメータ、$D$ は制約セットの直径であることを示す。
上記の複雑さの全て(ほぼ)が対応する下界と一致することを検証できる。
特定の$\mu$-strongly-convex-$\mu$-strongly-convexの場合、我々のアルゴリズムは通信ラウンド、通信複雑性、局所勾配呼び出しの上限を持つ$\mathcal O(\delta/\mu\log(1/\varepsilon))$, ${\mathcal O}((n+\sqrt{n}\delta/\mu)\log(1/\varepsilon))$, $\tilde{\mathcal O}(n+(\sqrt{n}\delta+L)/\mu)\log(1/\varepsilon))$である。
さらに,提案手法の実証的利点を示す数値実験を行った。
関連論文リスト
- Complexity of Minimizing Projected-Gradient-Dominated Functions with Stochastic First-order Oracles [38.45952947660789]
本稿では,$(alpha,tau,mathcal)$-projected-dominanceプロパティの下で関数を最小化する一階法の性能限界について検討する。
論文 参考訳(メタデータ) (2024-08-03T18:34:23Z) - On the Complexity of Finite-Sum Smooth Optimization under the
Polyak-{\L}ojasiewicz Condition [14.781921087738967]
本稿では、$min_bf xinmathbb Rd f(bf x)triangleq frac1nsum_i=1n f_i(bf x)$, ここで、$f(cdot)$はパラメータ$mu$と$f_i(cdot)_i=1n$は$L$-mean-squared smoothである。
論文 参考訳(メタデータ) (2024-02-04T17:14:53Z) - $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
コーディネータモデルにおける分散$ell_p$-regression問題のランダム化通信複雑性について考察する。
p = 2$、すなわち最小二乗回帰の場合、$tildeTheta(sd2 + sd/epsilon)$ bitsの最初の最適境界を与える。
p in (1,2)$ に対して、$tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound を得る。
論文 参考訳(メタデータ) (2023-07-11T08:51:53Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
本稿では,BFG凸最適化(SCO: Reweighted Query (ReSQue) 推定ツールを提案する。
我々はSCOの並列およびプライベート設定における最先端の複雑さを実現するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-01T18:51:29Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
私たちは、DEARESTが少なくとも$mathcal O(+sqrtmnLvarepsilon-2)$ 1次オラクル(IFO)コールと$mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$通信ラウンドを必要とすることを示す証拠を示します。
論文 参考訳(メタデータ) (2022-10-25T11:37:11Z) - Decentralized Stochastic Variance Reduced Extragradient Method [25.21457349137344]
本稿では,$min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumiの分散凸-凹極小最適化問題を考察する。
論文 参考訳(メタデータ) (2022-02-01T16:06:20Z) - Infinite-Horizon Offline Reinforcement Learning with Linear Function
Approximation: Curse of Dimensionality and Algorithm [46.36534144138337]
本稿では,オフライン強化学習におけるポリシー評価のサンプル複雑さについて検討する。
低分布シフトの仮定の下では、最大$oleft(maxleft fracleftvert thetapirightvert _24varepsilon4logfracddelta,frac1varepsilon2left(d+logfrac1deltaright)right right)$サンプルを必要とするアルゴリズムがあることを示す。
論文 参考訳(メタデータ) (2021-03-17T18:18:57Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
S$状態、$A$アクション、割引係数$gamma in (0,1)$、近似しきい値$epsilon > 0$の MDP が与えられた場合、$epsilon$-Optimal Policy を学ぶためのモデルなしアルゴリズムを提供する。
十分小さな$epsilon$の場合、サンプルの複雑さで改良されたアルゴリズムを示す。
論文 参考訳(メタデータ) (2020-06-06T13:34:41Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
本稿では,決定論的システムにおける関数近似を用いたQ$学習の問題について検討する。
もし$delta = Oleft(rho/sqrtdim_Eright)$なら、$Oleft(dim_Eright)$を使って最適なポリシーを見つけることができる。
論文 参考訳(メタデータ) (2020-02-17T18:41:49Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
有限和の有限ノイズ構造を利用して、大域オラクルモデルの下での一致する$O(n2)$-upper境界を導出する。
同様のアプローチを踏襲したSVRGの新規な適応法を提案し、これはオラクルと互換性があり、$tildeO(n2+nsqrtL/mu)log (1/epsilon)$と$O(nsqrtL/epsilon)$, for $mu>0$と$mu=0$の複雑さ境界を実現する。
論文 参考訳(メタデータ) (2020-02-09T03:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。