論文の概要: Decentralized Stochastic Variance Reduced Extragradient Method
- arxiv url: http://arxiv.org/abs/2202.00509v1
- Date: Tue, 1 Feb 2022 16:06:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-02 16:28:26.959368
- Title: Decentralized Stochastic Variance Reduced Extragradient Method
- Title(参考訳): 分散確率分散還元超勾配法
- Authors: Luo Luo, Haishan Ye
- Abstract要約: 本稿では,$min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumiの分散凸-凹極小最適化問題を考察する。
- 参考スコア(独自算出の注目度): 25.21457349137344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies decentralized convex-concave minimax optimization problems
of the form $\min_x\max_y f(x,y) \triangleq\frac{1}{m}\sum_{i=1}^m f_i(x,y)$,
where $m$ is the number of agents and each local function can be written as
$f_i(x,y)=\frac{1}{n}\sum_{j=1}^n f_{i,j}(x,y)$. We propose a novel
decentralized optimization algorithm, called multi-consensus stochastic
variance reduced extragradient, which achieves the best known stochastic
first-order oracle (SFO) complexity for this problem. Specifically, each agent
requires $\mathcal O((n+\kappa\sqrt{n})\log(1/\varepsilon))$ SFO calls for
strongly-convex-strongly-concave problem and $\mathcal
O((n+\sqrt{n}L/\varepsilon)\log(1/\varepsilon))$ SFO call for general
convex-concave problem to achieve $\varepsilon$-accurate solution in
expectation, where $\kappa$ is the condition number and $L$ is the smoothness
parameter. The numerical experiments show the proposed method performs better
than baselines.
- Abstract(参考訳): そこで$m$はエージェントの数であり、各局所関数は$f_i(x,y)=\frac{1}{n}\sum_{j=1}^n f_{i,j}(x,y)$と書くことができる。
本稿では,マルチコンセンサス確率分散低減法(multi-consensus stochastic variance reduced extragradient)と呼ばれる分散最適化アルゴリズムを提案する。
具体的には、各エージェントは$\mathcal O((n+\kappa\sqrt{n})\log(1/\varepsilon))$ SFOコールは強凸-強凹問題であり、$\mathcal O((n+\sqrt{n}L/\varepsilon)\log(1/\varepsilon))$ SFOコールは一般凸-凸問題で$\varepsilon$-accurate解を期待して、$\kappa$は条件数であり、$L$は滑らか性パラメータである。
数値実験により,提案手法はベースラインよりも優れた性能を示す。
関連論文リスト
- Efficient Continual Finite-Sum Minimization [52.5238287567572]
連続有限サム最小化(continuous finite-sum minimization)と呼ばれる有限サム最小化の鍵となるツイストを提案する。
我々のアプローチは$mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$で大幅に改善されます。
また、$mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$という自然な一階法は存在しないことを証明し、この方法の第一階法がほぼ密であることを示す。
論文 参考訳(メタデータ) (2024-06-07T08:26:31Z) - Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity [22.615156512223763]
本研究では,有限サム構造を目的とする分散楽観的すべり(SVOGS)法を提案する。
我々は$mathcal O(delta D2/varepsilon)$、$mathcal O(n+sqrtndelta D2/varepsilon)$、$tildemathcal O(n+sqrtndelta+L)D2/varepsilon)$の局所呼び出しを証明している。
論文 参考訳(メタデータ) (2024-05-25T08:34:49Z) - Nearly Optimal Regret for Decentralized Online Convex Optimization [53.433398074919]
分散オンライン凸最適化(D-OCO)は,局所計算と通信のみを用いて,グローバルな損失関数の列を最小化することを目的としている。
我々は凸関数と強い凸関数の残差をそれぞれ低減できる新しいD-OCOアルゴリズムを開発した。
我々のアルゴリズムは、$T$、$n$、$rho$の点でほぼ最適です。
論文 参考訳(メタデータ) (2024-02-14T13:44:16Z) - Projection-Free Methods for Stochastic Simple Bilevel Optimization with
Convex Lower-level Problem [16.9187409976238]
凸二レベル最適化のクラス、あるいは単純二レベル最適化(Simple bilevel optimization)のクラスについて検討する。
低レベルの問題の解集合を近似する新しい二段階最適化手法を導入する。
論文 参考訳(メタデータ) (2023-08-15T02:37:11Z) - Faster Stochastic Algorithms for Minimax Optimization under
Polyak--{\L}ojasiewicz Conditions [12.459354707528819]
我々は、$min_x max_y f(x,y)triqangle frac1n sum_i=1n f_i(x,y)$という形の有限サム問題を解くためのSPIDER-GDAを提案する。
SPIDER-GDA は $mathcal Oleft((n + sqrtn,kappa_xkappa_y2)log (1/epsilon) の中で $epsilon$-optimal Solution を見つけることができる。
論文 参考訳(メタデータ) (2023-07-29T02:26:31Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
私たちは、DEARESTが少なくとも$mathcal O(+sqrtmnLvarepsilon-2)$ 1次オラクル(IFO)コールと$mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$通信ラウンドを必要とすることを示す証拠を示します。
論文 参考訳(メタデータ) (2022-10-25T11:37:11Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
積 $r:=p + q$, ここで$r$は$mu$-strong convex類似性である。
エージェントの通信やローカルコールにマスターされた問題を解決する方法を提案する。
提案手法は$mathcalO(sqrtL_q/mu)$法よりもはるかにシャープである。
論文 参考訳(メタデータ) (2022-05-30T14:28:02Z) - Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced
Convex-Concave Minimax Optimization [41.432757205864796]
本稿では,$min_bf xmax_yf(bfbf y)という形の凸-凸最小値問題の1次アルゴリズムを同時に検討する。
我々の手法は、より一般的な不均衡なミニマックス問題を解くために使用することができ、また、ほぼ最適である。
論文 参考訳(メタデータ) (2021-06-03T11:30:32Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
我々は,バンディットフィードバックを用いてオンライン学習を学習する。
learnerは、コスト/リワード関数が"pseudo-1d"構造を許可するゼロ次オラクルのみにアクセスできる。
我々は、$T$がラウンドの数である任意のアルゴリズムの後悔のために$min(sqrtdT、T3/4)$の下限を示しています。
ランダム化オンライングラデーション下降とカーネル化指数重み法を組み合わせた新しいアルゴリズムsbcalgを提案し,疑似-1d構造を効果的に活用する。
論文 参考訳(メタデータ) (2021-02-15T08:16:51Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。