VOODOO XP: Expressive One-Shot Head Reenactment for VR Telepresence
- URL: http://arxiv.org/abs/2405.16204v2
- Date: Tue, 28 May 2024 09:22:34 GMT
- Title: VOODOO XP: Expressive One-Shot Head Reenactment for VR Telepresence
- Authors: Phong Tran, Egor Zakharov, Long-Nhat Ho, Liwen Hu, Adilbek Karmanov, Aviral Agarwal, McLean Goldwhite, Ariana Bermudez Venegas, Anh Tuan Tran, Hao Li,
- Abstract summary: VOODOO XP is a 3D-aware one-shot head reenactment method that can generate highly expressive facial expressions from any input driver video and a single 2D portrait.
We show our solution on a monocular video setting and an end-to-end VR telepresence system for two-way communication.
- Score: 14.010324388059866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce VOODOO XP: a 3D-aware one-shot head reenactment method that can generate highly expressive facial expressions from any input driver video and a single 2D portrait. Our solution is real-time, view-consistent, and can be instantly used without calibration or fine-tuning. We demonstrate our solution on a monocular video setting and an end-to-end VR telepresence system for two-way communication. Compared to 2D head reenactment methods, 3D-aware approaches aim to preserve the identity of the subject and ensure view-consistent facial geometry for novel camera poses, which makes them suitable for immersive applications. While various facial disentanglement techniques have been introduced, cutting-edge 3D-aware neural reenactment techniques still lack expressiveness and fail to reproduce complex and fine-scale facial expressions. We present a novel cross-reenactment architecture that directly transfers the driver's facial expressions to transformer blocks of the input source's 3D lifting module. We show that highly effective disentanglement is possible using an innovative multi-stage self-supervision approach, which is based on a coarse-to-fine strategy, combined with an explicit face neutralization and 3D lifted frontalization during its initial training stage. We further integrate our novel head reenactment solution into an accessible high-fidelity VR telepresence system, where any person can instantly build a personalized neural head avatar from any photo and bring it to life using the headset. We demonstrate state-of-the-art performance in terms of expressiveness and likeness preservation on a large set of diverse subjects and capture conditions.
Related papers
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - VOODOO 3D: Volumetric Portrait Disentanglement for One-Shot 3D Head
Reenactment [17.372274738231443]
We present a 3D-aware one-shot head reenactment method based on a fully neural disentanglement framework for source appearance and driver expressions.
Our method is real-time and produces high-fidelity and view-consistent output, suitable for 3D teleconferencing systems based on holographic displays.
arXiv Detail & Related papers (2023-12-07T19:19:57Z) - High-fidelity Facial Avatar Reconstruction from Monocular Video with
Generative Priors [29.293166730794606]
We propose a new method for NeRF-based facial avatar reconstruction that utilizes 3D-aware generative prior.
Compared with existing works, we obtain superior novel view synthesis results and faithfully face reenactment performance.
arXiv Detail & Related papers (2022-11-28T04:49:46Z) - Dynamic Neural Portraits [58.480811535222834]
We present Dynamic Neural Portraits, a novel approach to the problem of full-head reenactment.
Our method generates photo-realistic video portraits by explicitly controlling head pose, facial expressions and eye gaze.
Our experiments demonstrate that the proposed method is 270 times faster than recent NeRF-based reenactment methods.
arXiv Detail & Related papers (2022-11-25T10:06:14Z) - Attention based Occlusion Removal for Hybrid Telepresence Systems [5.006086647446482]
We propose a novel attention-enabled encoder-decoder architecture for HMD de-occlusion.
We report superior qualitative and quantitative results over state-of-the-art methods.
We also present applications of this approach to hybrid video teleconferencing using existing animation and 3D face reconstruction pipelines.
arXiv Detail & Related papers (2021-12-02T10:18:22Z) - Robust Egocentric Photo-realistic Facial Expression Transfer for Virtual
Reality [68.18446501943585]
Social presence will fuel the next generation of communication systems driven by digital humans in virtual reality (VR)
The best 3D video-realistic VR avatars that minimize the uncanny effect rely on person-specific (PS) models.
This paper makes progress in overcoming these limitations by proposing an end-to-end multi-identity architecture.
arXiv Detail & Related papers (2021-04-10T15:48:53Z) - Pixel Codec Avatars [99.36561532588831]
Pixel Codec Avatars (PiCA) is a deep generative model of 3D human faces.
On a single Oculus Quest 2 mobile VR headset, 5 avatars are rendered in realtime in the same scene.
arXiv Detail & Related papers (2021-04-09T23:17:36Z) - HeadGAN: One-shot Neural Head Synthesis and Editing [70.30831163311296]
HeadGAN is a system that synthesises on 3D face representations and adapted to the facial geometry of any reference image.
The 3D face representation enables HeadGAN to be further used as an efficient method for compression and reconstruction and a tool for expression and pose editing.
arXiv Detail & Related papers (2020-12-15T12:51:32Z) - Unmasking Communication Partners: A Low-Cost AI Solution for Digitally
Removing Head-Mounted Displays in VR-Based Telepresence [62.997667081978825]
Face-to-face conversation in Virtual Reality (VR) is a challenge when participants wear head-mounted displays (HMD)
Past research has shown that high-fidelity face reconstruction with personal avatars in VR is possible under laboratory conditions with high-cost hardware.
We propose one of the first low-cost systems for this task which uses only open source, free software and affordable hardware.
arXiv Detail & Related papers (2020-11-06T23:17:12Z) - Head2Head++: Deep Facial Attributes Re-Targeting [6.230979482947681]
We leverage the 3D geometry of faces and Generative Adversarial Networks (GANs) to design a novel deep learning architecture for the task of facial and head reenactment.
We manage to capture the complex non-rigid facial motion from the driving monocular performances and synthesise temporally consistent videos.
Our system performs end-to-end reenactment in nearly real-time speed (18 fps)
arXiv Detail & Related papers (2020-06-17T23:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.