論文の概要: A better approach to diagnose retinal diseases: Combining our Segmentation-based Vascular Enhancement with deep learning features
- arxiv url: http://arxiv.org/abs/2405.16235v1
- Date: Sat, 25 May 2024 13:52:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 00:21:21.732247
- Title: A better approach to diagnose retinal diseases: Combining our Segmentation-based Vascular Enhancement with deep learning features
- Title(参考訳): 網膜疾患の診断におけるより良いアプローチ : セグメンテーションに基づく血管拡張とディープラーニング機能の組み合わせ
- Authors: Yuzhuo Chen, Zetong Chen, Yuanyuan Liu,
- Abstract要約: 網膜基底像の異常は特定の病態を示す可能性がある。
従来の医学では、網膜関連疾患の診断は、医師の網膜基底画像の主観的評価に依存している。
本稿では,網膜基底画像関連疾患の迅速かつ客観的かつ正確な診断法を提案する。
- 参考スコア(独自算出の注目度): 3.717366858126521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Abnormalities in retinal fundus images may indicate certain pathologies such as diabetic retinopathy, hypertension, stroke, glaucoma, retinal macular edema, venous occlusion, and atherosclerosis, making the study and analysis of retinal images of great significance. In conventional medicine, the diagnosis of retina-related diseases relies on a physician's subjective assessment of the retinal fundus images, which is a time-consuming process and the accuracy is highly dependent on the physician's subjective experience. To this end, this paper proposes a fast, objective, and accurate method for the diagnosis of diseases related to retinal fundus images. This method is a multiclassification study of normal samples and 13 categories of disease samples on the STARE database, with a test set accuracy of 99.96%. Compared with other studies, our method achieved the highest accuracy. This study innovatively propose Segmentation-based Vascular Enhancement(SVE). After comparing the classification performances of the deep learning models of SVE images, original images and Smooth Grad-CAM ++ images, we extracted the deep learning features and traditional features of the SVE images and input them into nine meta learners for classification. The results shows that our proposed UNet-SVE-VGG-MLP model has the optimal performance for classifying diseases related to retinal fundus images on the STARE database, with a overall accuracy of 99.96% and a weighted AUC of 99.98% for the 14 categories on test dataset. This method can be used to realize rapid, objective, and accurate classification and diagnosis of retinal fundus image related diseases.
- Abstract(参考訳): 網膜基底像の異常は、糖尿病性網膜症、高血圧、脳卒中、緑内障、網膜黄斑浮腫、静脈閉塞、動脈硬化症などの特定の病態を示し、網膜像の研究と解析に大きな意義がある。
従来の医学では、網膜関連疾患の診断は、医師の主観的評価に依存するが、これは時間のかかるプロセスであり、精度は医師の主観的経験に大きく依存している。
そこで本研究では,網膜基底画像関連疾患の迅速かつ客観的かつ正確な診断法を提案する。
本手法は、STAREデータベース上の正常サンプルと13種類の疾患サンプルの多分類化研究であり、テストセットの精度は99.96%である。
他の研究と比較すると,本手法は高い精度を達成できた。
本研究は,Segmentation-based Vascular Enhancement(SVE)を革新的に提案する。
SVE画像、オリジナル画像、Smooth Grad-CAM ++画像の深層学習モデルの分類性能を比較した後、SVE画像の深層学習特徴と伝統的な特徴を抽出し、9つのメタ学習者に入力した。
その結果,提案したUNet-SVE-VGG-MLPモデルは,STAREデータベース上で網膜基底画像に関連する疾患の分類に最適であり,総合精度は99.96%,重み付きAUCは99.98%であった。
本手法は、網膜底部画像関連疾患の迅速かつ客観的かつ正確な分類と診断を実現するために用いられる。
関連論文リスト
- Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
高齢のアメリカ人では眼疾患が一般的であり、視力や視力の低下につながることがある。
光コヒーレンス・トモグラフィ・アンギオグラフィー(OCTA)により、臨床医が網膜血管の高品質な画像を取得することができる画像技術の最近の進歩
OCTAは、一般的なOCT画像から得られる構造情報と比較して、詳細な血管画像を提供する。
論文 参考訳(メタデータ) (2024-07-21T23:24:49Z) - Novel Fundus Image Preprocessing for Retcam Images to Improve Deep Learning Classification of Retinopathy of Prematurity [5.408949958349055]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、目の網膜に損傷があるため失明する眼疾患である。
本稿では,事前学習フレームワークを用いた新しい基礎前処理手法を提案する。
論文 参考訳(メタデータ) (2023-02-06T01:44:45Z) - Multi-Label Retinal Disease Classification using Transformers [0.0]
新たな多ラベル網膜疾患データセットである MuReD が構築され、眼底疾患分類のために公開されているデータセットが多数使用されている。
広範な実験によって最適化されたトランスフォーマーベースのモデルは、画像解析と意思決定に使用される。
この手法は, 疾患検出と疾患分類のためのAUCスコアの7.9%と8.1%の精度で, 同じ課題における最先端の作業よりも優れていた。
論文 参考訳(メタデータ) (2022-07-05T22:06:52Z) - Automatic Classification of Neuromuscular Diseases in Children Using
Photoacoustic Imaging [77.32032399775152]
神経筋疾患(NMD)は、医療システムと社会の両方に重大な負担をもたらす。
激しい進行性筋力低下、筋変性、収縮、変形、進行性障害を引き起こす。
論文 参考訳(メタデータ) (2022-01-27T16:37:19Z) - COROLLA: An Efficient Multi-Modality Fusion Framework with Supervised
Contrastive Learning for Glaucoma Grading [1.2250035750661867]
緑内障の診断に有効な多モード教師付きコントラスト学習フレームワークであるCOROLLAを提案する。
教師付きコントラスト学習を用いて、より良い収束性でモデルの識別能力を高めます。
GAMMAデータセットでは,我々のCOROLLAフレームワークは最先端の手法と比較して圧倒的な緑内障グレーディング性能を達成している。
論文 参考訳(メタデータ) (2022-01-11T06:00:51Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。