論文の概要: Advanced Assessment of Stroke in Retinal Fundus Imaging with Deep Multi-view Learning
- arxiv url: http://arxiv.org/abs/2502.00079v1
- Date: Fri, 31 Jan 2025 14:10:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:05.481615
- Title: Advanced Assessment of Stroke in Retinal Fundus Imaging with Deep Multi-view Learning
- Title(参考訳): 深層多視点学習による網膜基底イメージングにおけるストロークの高度評価
- Authors: Aysen Degerli, Mika Hilvo, Juha Pajula, Petri Huhtinen, Pekka Jäkälä,
- Abstract要約: 網膜基底像を用いて脳卒中・一過性虚血発作(TIA)を検出する多視点脳卒中ネットワーク(MVS-Net)を提案する。
既存の研究とは対照的に,本研究では,深層多視点学習による脳卒中とTAAを識別する解法を初めて提案する。
- 参考スコア(独自算出の注目度): 0.8388591755871736
- License:
- Abstract: Stroke is globally a major cause of mortality and morbidity, and hence accurate and rapid diagnosis of stroke is valuable. Retinal fundus imaging reveals the known markers of elevated stroke risk in the eyes, which are retinal venular widening, arteriolar narrowing, and increased tortuosity. In contrast to other imaging techniques used for stroke diagnosis, the acquisition of fundus images is easy, non-invasive, fast, and inexpensive. Therefore, in this study, we propose a multi-view stroke network (MVS-Net) to detect stroke and transient ischemic attack (TIA) using retinal fundus images. Contrary to existing studies, our study proposes for the first time a solution to discriminate stroke and TIA with deep multi-view learning by proposing an end-to-end deep network, consisting of multi-view inputs of fundus images captured from both right and left eyes. Accordingly, the proposed MVS-Net defines representative features from fundus images of both eyes and determines the relation within their macula-centered and optic nerve head-centered views. Experiments performed on a dataset collected from stroke and TIA patients, in addition to healthy controls, show that the proposed framework achieves an AUC score of 0.84 for stroke and TIA detection.
- Abstract(参考訳): ストロークは世界中で死亡率と致死率の主要な原因であり、脳卒中を正確かつ迅速に診断することが重要である。
網膜基底像では、網膜静脈拡張、動脈の狭化、および視力の増大など、眼の脳卒中リスクの既知のマーカーが明らかにされている。
脳卒中診断に使用される他の画像技術とは対照的に、眼底画像の取得は簡単で、非侵襲的で、高速で、安価である。
そこで本研究では,網膜基底像を用いて脳卒中・一過性虚血発作(TIA)を検出する多視点脳卒中ネットワーク(MVS-Net)を提案する。
従来の研究とは対照的に,右眼と左眼の両方から取得した眼底画像の多視点入力からなるエンドツーエンドのディープ・ネットワークを提案することにより,脳卒中とTAAを深いマルチビュー・ラーニングで識別する手法が提案されている。
そこで,提案したMVS-Netは両眼の眼底画像から代表的特徴を定義し,マキュラ中心視と視神経中心視の関連性を決定する。
脳卒中およびTAA患者から収集したデータセットを用いて行った実験は、健康なコントロールに加えて、提案フレームワークが脳卒中およびTAA検出のためのAUCスコア0.84を達成していることを示している。
関連論文リスト
- Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
高齢のアメリカ人では眼疾患が一般的であり、視力や視力の低下につながることがある。
光コヒーレンス・トモグラフィ・アンギオグラフィー(OCTA)により、臨床医が網膜血管の高品質な画像を取得することができる画像技術の最近の進歩
OCTAは、一般的なOCT画像から得られる構造情報と比較して、詳細な血管画像を提供する。
論文 参考訳(メタデータ) (2024-07-21T23:24:49Z) - A better approach to diagnose retinal diseases: Combining our Segmentation-based Vascular Enhancement with deep learning features [3.717366858126521]
網膜基底像の異常は特定の病態を示す可能性がある。
従来の医学では、網膜関連疾患の診断は、医師の網膜基底画像の主観的評価に依存している。
本稿では,網膜基底画像関連疾患の迅速かつ客観的かつ正確な診断法を提案する。
論文 参考訳(メタデータ) (2024-05-25T13:52:40Z) - OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods [34.13887472397715]
本研究は,2000枚以上の OCT 画像からなるオープンアクセス型 OCT データセット (OCTDL) を提案する。
このデータセットは、加齢関連黄斑変性症(AMD)、糖尿病黄斑浮腫(DME)、網膜膜(ERM)、網膜動脈閉塞症(RAO)、網膜静脈閉塞症(RVO)、およびVID(Vitreomacular Interface Disease)患者のOCT記録からなる。
論文 参考訳(メタデータ) (2023-12-13T16:18:40Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
糖尿病網膜症(英: Diabetic Retinopathy, DR)は、糖尿病において網膜に存在する血管網を損傷する障害である。
経験豊富な臨床医は、疾患の特定に使用される画像中の腫瘍を識別する必要があるため、カラー・ファンドス画像を用いてDR診断を行うのにしばらく時間がかかる可能性がある。
論文 参考訳(メタデータ) (2023-04-29T16:11:34Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
ホワイトマターパーセレーション(White matter parcellation)は、トラクトグラフィーをクラスタまたは解剖学的に意味のあるトラクトに分類する。
ほとんどのパーセレーション法はディープホワイトマター(DWM)にフォーカスするが、その複雑さのため表面ホワイトマター(SWM)に対処する手法は少ない。
本稿では,2段階の深層学習に基づく新しいフレームワークであるSuperficial White Matter Analysis (SupWMA)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:07:53Z) - RADNet: Ensemble Model for Robust Glaucoma Classification in Color
Fundus Images [0.0]
緑内障は最も重篤な眼疾患の1つで、急激な進行と不可逆性失明を特徴とする。
集団の正常な緑内障検診では早期発見が改善するが,病原性チェックアップの望ましい頻度は期待できないことが多い。
本研究では,高度な画像前処理手法と深層分類ネットワークのアンサンブルを併用した画像前処理手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T16:48:00Z) - GAMMA Challenge:Glaucoma grAding from Multi-Modality imAges [48.98620387924817]
グラウコーマgAding from Multi-Modality imAges (GAMMA) Challenge を作成した。
この課題の主な課題は,2次元眼底画像と3D OCTスキャンボリュームから緑内障を診断することである。
緑内障のカラー写真と3D OCTボリュームを併用した緑内障アノテートデータセットを公表した。
論文 参考訳(メタデータ) (2022-02-14T06:54:15Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。