論文の概要: Comparative Analysis of Open-Source Language Models in Summarizing Medical Text Data
- arxiv url: http://arxiv.org/abs/2405.16295v1
- Date: Sat, 25 May 2024 16:16:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:57:23.946113
- Title: Comparative Analysis of Open-Source Language Models in Summarizing Medical Text Data
- Title(参考訳): 医用テキストデータの要約におけるオープンソース言語モデルの比較分析
- Authors: Yuhao Chen, Zhimu Wang, Bo Wen, Farhana Zulkernine,
- Abstract要約: 大規模言語モデル(LLM)は,非構造化テキストデータに対する問合せおよび要約処理において,優れた性能を示した。
医用要約タスクにおけるオープンソースのLCMの性能分析のための評価手法を提案する。
- 参考スコア(独自算出の注目度): 5.443548415516227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unstructured text in medical notes and dialogues contains rich information. Recent advancements in Large Language Models (LLMs) have demonstrated superior performance in question answering and summarization tasks on unstructured text data, outperforming traditional text analysis approaches. However, there is a lack of scientific studies in the literature that methodically evaluate and report on the performance of different LLMs, specifically for domain-specific data such as medical chart notes. We propose an evaluation approach to analyze the performance of open-source LLMs such as Llama2 and Mistral for medical summarization tasks, using GPT-4 as an assessor. Our innovative approach to quantitative evaluation of LLMs can enable quality control, support the selection of effective LLMs for specific tasks, and advance knowledge discovery in digital health.
- Abstract(参考訳): 医療ノートや対話における構造化されていないテキストには、豊富な情報が含まれている。
近年のLarge Language Models (LLMs) の進歩は、非構造化テキストデータに対する回答および要約タスクにおいて優れた性能を示し、従来のテキスト解析手法よりも優れている。
しかし、医学図表のような分野固有のデータに対して、異なるLCMの性能を客観的に評価し報告する科学的研究は文献に欠けている。
GPT-4 をアセスメントとして,医療要約タスクにおける Llama2 や Mistral などのオープンソース LLM の性能評価手法を提案する。
LLMの定量的評価に対する革新的なアプローチは、品質管理を可能にし、特定のタスクに有効なLLMの選択を支援し、デジタルヘルスにおける知識発見を促進する。
関連論文リスト
- Leveraging Large Language Models for Medical Information Extraction and Query Generation [2.1793134762413433]
本稿では,大言語モデル(LLM)を臨床試験検索プロセスに統合するシステムを提案する。
クエリ生成には6つのLCMを評価し,最小限の計算資源を必要とする,オープンソースと比較的小さなモデルに着目した。
論文 参考訳(メタデータ) (2024-10-31T12:01:51Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
本稿では,MedExQAについて紹介する。MedExQAは,医学的知識に関する大規模言語モデル (LLM) の理解を説明を通じて評価するための,医学的質問応答の新しいベンチマークである。
5つの異なる医療専門分野のデータセットを構築することで、現在の医療QAベンチマークの大きなギャップに対処する。
本研究は、医学LLMにおける説明可能性の重要性を強調し、分類精度以上のモデルを評価する効果的な方法論を提案し、特定の分野である音声言語病理学に光を当てる。
論文 参考訳(メタデータ) (2024-06-10T14:47:04Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
我々は、テキスト単純化(TS)タスク上で、最新の最先端の大規模言語モデル(LLM)のパフォーマンスベンチマークであるBLESSを紹介する。
異なるドメイン(Wikipedia、ニュース、医療)の3つのテストセットに対して、サイズ、アーキテクチャ、事前学習方法、アクセシビリティの異なる44のモデルを評価する。
評価の結果,最高のLSMはTSのトレーニングを受けていないにもかかわらず,最先端のTSベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2023-10-24T12:18:17Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - A systematic evaluation of large language models for biomedical natural language processing: benchmarks, baselines, and recommendations [22.668383945059762]
そこで本研究では,12個のBioNLPデータセットにまたがる4つの代表言語モデル(LLM)を体系的に評価する。
評価は、ゼロショット、静的少数ショット、動的Kアネレスト、微調整の4つの設定で行われる。
これらのモデルと最先端(SOTA)アプローチを比較し、細い(ドメイン固有の)BERTモデルやBARTモデルと比較する。
論文 参考訳(メタデータ) (2023-05-10T13:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。