論文の概要: SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs
- arxiv url: http://arxiv.org/abs/2405.16325v1
- Date: Sat, 25 May 2024 18:43:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:57:23.852187
- Title: SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs
- Title(参考訳): SLoPe:LDMの2段式スパースプラスラジローランドアダプタプレトレーニング
- Authors: Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao Zhang, Maryam Mehri Dehnavi,
- Abstract要約: SLoPeは、トレーニング前の1%のイテレーションで低ランクのアダプタを追加することで、スパース事前訓練モデルの精度を向上させる。
SLoPeは、数十億のパラメータを持つモデルのトレーニングと推論を、それぞれ1.14times$と1.34times$に加速する。
- 参考スコア(独自算出の注目度): 11.205297962036312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose SLoPe, a Double-Pruned Sparse Plus Lazy Low-rank Adapter Pretraining method for LLMs that improves the accuracy of sparse LLMs while accelerating their pretraining and inference and reducing their memory footprint. Sparse pretraining of LLMs reduces the accuracy of the model, to overcome this, prior work uses dense models during fine-tuning. SLoPe improves the accuracy of sparsely pretrained models by adding low-rank adapters in the final 1% iterations of pretraining without adding significant overheads to the model pretraining and inference. In addition, SLoPe uses a double-pruned backward pass formulation that prunes the transposed weight matrix using N:M sparsity structures to enable an accelerated sparse backward pass. SLoPe accelerates the training and inference of models with billions of parameters up to $1.14\times$ and $1.34\times$ respectively (OPT-33B and OPT-66B) while reducing their memory usage by up to $0.77\times$ and $0.51\times$ for training and inference respectively.
- Abstract(参考訳): SLoPeは,スパルスLLMの精度を向上し,プリトレーニングと推論の高速化とメモリフットプリントの削減を図る。
LLMのスパース事前トレーニングはモデルの精度を低下させ、これを克服するため、以前の作業では微調整中に高密度モデルを使用する。
SLoPeは、モデルの事前学習と推論にかなりのオーバーヘッドを加えることなく、最終1%の繰り返しに低ランクのアダプタを追加することで、疎い事前学習モデルの精度を向上させる。
さらに、SLoPeは、N:M空間構造を用いて重み付けされた重み付け行列をプーンし、加速されたスパース後方通過を可能にするダブルプルーニングされた後方通過定式化を使用する。
SLoPeは、数十億ドルのパラメータを持つモデルのトレーニングと推論をそれぞれ1.14\times$と1.34\times$(OPT-33BとOPT-66B)まで加速し、メモリ使用量を最大0.77\times$と0.51\times$に減らした。
関連論文リスト
- CoLA: Compute-Efficient Pre-Training of LLMs via Low-Rank Activation [17.807249890437767]
我々は,CoLAとそのメモリ効率向上実装であるCoLA-Mを紹介する。
モデルアクティベーションにおいて広く観測される低ランク構造を利用して、モデルサイズを削減し、モデルのキャパシティを向上し、トレーニング効率を向上させる。
6000万から70億のパラメータを持つLLaMAモデルの実験では、CoLAはコンピューティングコストを$bf 2pmbtimes$で削減し、フルランクレベルのパフォーマンスを維持しながら、トレーニングスループットを$bf 1.86pmbtimes$で改善している。
論文 参考訳(メタデータ) (2025-02-16T01:05:16Z) - Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training [27.857935426067076]
スモール言語モデル (SLM) はエッジデバイスにおける幅広い応用のために注目されている。
高い性能を持つSLMを得るには、計算コストがかなりかかるスクラッチからモデルを事前訓練するか、既存の大規模言語モデル(LLM)を圧縮し、事前訓練に比べて性能が低下し低下する。
1) レイヤーワイド適応プルーニング (Adapt-Pruner) は, LLM において極めて有効であり, 既存のプルーニング技術よりも顕著な改善が得られ, 2) さらなるトレーニングを施した適応プルーニングは, スクラッチから事前学習したプルーニングに匹敵するモデルとなる。
論文 参考訳(メタデータ) (2025-02-05T18:57:40Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
本稿では,大規模言語モデルに対する最適スパース事前学習構成の体系的検討を行う。
総トレーニング計算の25%でプルーニングを開始し、75%で終了すると、ほぼ最適の最終評価損失が得られることがわかった。
本稿では,事前学習よりも平均パラメータ数を使用するように,チンチラスケーリング法を修正した新しいスケーリング法を提案する。
論文 参考訳(メタデータ) (2025-01-21T20:23:22Z) - SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training [60.9776082805359]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示しているが、そのトレーニングは、非常にリソース集約的で、トレーニングの不安定性に影響を受けやすいままである。
本稿では,LLMトレーニング中に観測された勾配スパイクを包括的に調査し,複数のアーキテクチャやデータセットにまたがる傾向を明らかにする。
本稿では,モーメントムリセットを用いたスパイク・アウェア・アダムを提案し,モーメントムリセットとスパイク・アウェア・クリッピングによる勾配スパイク対策について述べる。
論文 参考訳(メタデータ) (2025-01-12T15:21:22Z) - SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining [39.56934385513862]
大規模言語モデル(LLM)をゼロから訓練するには、計算能力と広範なメモリ容量が必要である。
最近の研究では、パラメータとメモリの点で効率的な微調整のための重量の低ランク構造を探索している。
本稿では,SLTrain と呼ばれる事前学習用低ランク行列とスパース行列の和として重みをパラメータ化することを提案する。
論文 参考訳(メタデータ) (2024-06-04T11:14:21Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - APT: Adaptive Pruning and Tuning Pretrained Language Models for Efficient Training and Inference [63.52244442498831]
大規模言語モデル(LM)による微調整と推論は一般的に高価であることが知られている。
LMのパラメータを適応的にプーンし調整するAPTを導入する。
APTは、LMの微調整を最大8倍高速化し、LMのメモリトレーニングのフットプリントを最大70%削減する。
論文 参考訳(メタデータ) (2024-01-22T18:39:40Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。