論文の概要: APT: Adaptive Pruning and Tuning Pretrained Language Models for Efficient Training and Inference
- arxiv url: http://arxiv.org/abs/2401.12200v2
- Date: Tue, 4 Jun 2024 06:39:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 13:27:48.802181
- Title: APT: Adaptive Pruning and Tuning Pretrained Language Models for Efficient Training and Inference
- Title(参考訳): APT: 効果的な訓練と推論のための適応的プルーニングと事前訓練型言語モデル
- Authors: Bowen Zhao, Hannaneh Hajishirzi, Qingqing Cao,
- Abstract要約: 大規模言語モデル(LM)による微調整と推論は一般的に高価であることが知られている。
LMのパラメータを適応的にプーンし調整するAPTを導入する。
APTは、LMの微調整を最大8倍高速化し、LMのメモリトレーニングのフットプリントを最大70%削減する。
- 参考スコア(独自算出の注目度): 63.52244442498831
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Fine-tuning and inference with large Language Models (LM) are generally known to be expensive. Parameter-efficient fine-tuning over pretrained LMs reduces training memory by updating a small number of LM parameters but does not improve inference efficiency. Structured pruning improves LM inference efficiency by removing consistent parameter blocks, yet often increases training memory and time. To improve both training and inference efficiency, we introduce APT that adaptively prunes and tunes parameters for the LMs. At the early stage of fine-tuning, APT dynamically adds salient tuning parameters for fast and accurate convergence while discarding unimportant parameters for efficiency. Compared to baselines, our experiments show that APT maintains up to 98% task performance when pruning RoBERTa and T5 models with 40% parameters left while keeping 86.4% LLaMA models' performance with 70% parameters remained. Furthermore, APT speeds up LMs fine-tuning by up to 8x and reduces large LMs memory training footprint by up to 70%.
- Abstract(参考訳): 大規模言語モデル(LM)による微調整と推論は一般的に高価であることが知られている。
事前訓練されたLMに対するパラメータ効率の微調整は、少数のLMパラメータを更新することでトレーニングメモリを削減するが、推論効率は向上しない。
構造化プルーニングは、一貫したパラメータブロックを取り除くことでLM推論効率を向上させるが、しばしばトレーニングメモリと時間を増加させる。
トレーニングと推論の効率を両立させるため,LMのパラメータを適応的にプーンし調整するAPTを導入する。
ファインチューニングの初期段階では、APTは高速かつ正確な収束のための健全なチューニングパラメータを動的に追加し、非重要パラメータを効率のために破棄する。
ベースラインと比較すると,RoBERTaモデルとT5モデルが40%,86.4%,LLaMAモデルが70%であった場合,APTは最大98%のタスク性能を維持していることがわかった。
さらに、ALTはLMの微調整を最大8倍高速化し、LMのメモリトレーニングのフットプリントを最大70%削減する。
関連論文リスト
- SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining [39.56934385513862]
大規模言語モデル(LLM)をゼロから訓練するには、計算能力と広範なメモリ容量が必要である。
最近の研究では、パラメータとメモリの点で効率的な微調整のための重量の低ランク構造を探索している。
本稿では,SLTrain と呼ばれる事前学習用低ランク行列とスパース行列の和として重みをパラメータ化することを提案する。
論文 参考訳(メタデータ) (2024-06-04T11:14:21Z) - GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection [133.45193150403537]
LLM(Large Language Models)のトレーニングは、重み付けやGPU状態の増大によって、メモリ上の重大な問題が発生する。
本研究では,メモリ効率のトレーニング戦略としてグラディエント・ローランド・プロジェクション(GaLore)を提案する。
私たちの8ビットのGaLoreは、BF16ベースラインと比較して、メモリを82.5%、トレーニング総メモリを63.3%削減します。
論文 参考訳(メタデータ) (2024-03-06T07:29:57Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
低ランク適応 (LoRA) は、適応過程が本質的に低次元であるという考えに基づいている。
我々は、より高階を維持しながらトレーニング可能なパラメータを少なくするミニアンサンブルな低ランクアダプタMELoRAを提案する。
実験結果から, 自然言語理解タスクの8倍のトレーニングパラメータ, 続くタスクの36倍のトレーニングパラメータが得られた。
論文 参考訳(メタデータ) (2024-02-27T07:14:12Z) - SIBO: A Simple Booster for Parameter-Efficient Fine-Tuning [10.450910399290818]
初期残基を注入することによりPEFTを増強するSIBOを提案する。
22のベンチマークデータセットに対する大規模な実験により、SIBOは様々な強力なベースラインの性能を著しく向上させ、算術および常識推論タスクにおける既存のPEFTメソッドよりも最大15.7%、23.5%向上した。
論文 参考訳(メタデータ) (2024-02-19T07:22:29Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
モデル性能を維持しながら計算効率のよい微調整を実現するために,様々なパラメータ効率の微調整技術が提案されている。
テンソル-トレイン分解によりトレーニング可能なパラメータを大幅に削減するフレームワークであるLoRETTAを提案する。
LoRETTAは、LLaMA-2-7Bモデルで最大100倍のパラメータで、最も広く使われているPEFT法よりも同等または優れた性能を実現している。
論文 参考訳(メタデータ) (2024-02-18T01:20:00Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning [14.975436239088312]
ソフトプロンプトを短いソフトプロンプトと2つの異なる学習率で最適化された低ランク行列に分解するDePTを提案する。
DePTは、いくつかのシナリオにおいて、完全な微調整ベースラインを含む最先端のPEFTアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-09-11T00:02:05Z) - LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer
Learning [82.93130407930762]
大規模な事前訓練されたモデルのパラメータセット全体を更新するのはコストがかかる。
PETL技術は、トレーニング済みのバックボーンネットワーク内のパラメータの小さなサブセットを更新して、新しいタスクを実行できる。
本稿では,学習用メモリの必要量を大幅に削減するPETL技術であるLadder Side-Tuning (LST)を提案する。
論文 参考訳(メタデータ) (2022-06-13T23:51:56Z) - Know Where You're Going: Meta-Learning for Parameter-Efficient
Fine-tuning [34.66092282348687]
そこで本研究では,微調整手法の究極的な選択を考慮に入れれば,パラメータ効率の高い微調整性能が向上することを示す。
パラメータ効率の良い微調整のための事前学習モデルを作成し,NERファインチューニングにおける最大1.7ポイントのゲインを得た。
論文 参考訳(メタデータ) (2022-05-25T02:51:57Z) - LiST: Lite Self-training Makes Efficient Few-shot Learners [91.28065455714018]
LiSTは古典的な微調整法よりも35%改善し、プロンプトチューニングよりも6%改善した。
論文 参考訳(メタデータ) (2021-10-12T18:47:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。