論文の概要: Devil's Advocate: Anticipatory Reflection for LLM Agents
- arxiv url: http://arxiv.org/abs/2405.16334v2
- Date: Tue, 28 May 2024 03:22:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 11:09:02.682907
- Title: Devil's Advocate: Anticipatory Reflection for LLM Agents
- Title(参考訳): Devil's Advocate: LLMエージェントの予測反射
- Authors: Haoyu Wang, Tao Li, Zhiwei Deng, Dan Roth, Yang Li,
- Abstract要約: 本稿では,LLMエージェントにイントロスペクションを付与し,複雑なタスクを解く上での一貫性と適応性を向上する手法を提案する。
1) 潜在的な障害の予測と行動実行前の代替的治療,2) サブタスク目標との反応後アライメント, および治療によるバックトラック, 3) 今後の戦略改善に向けた計画完了に関する総合的レビュー, の3段階のイントロスペクティブ介入を実施している。
実験結果から,我々のイントロスペクション駆動型アプローチは,計画実行の堅牢なメカニズムを通じて,予期せぬ課題をナビゲートするエージェントの能力を向上するだけでなく,課題達成に必要な試行回数や計画修正を削減して効率を向上させることが示唆された。
- 参考スコア(独自算出の注目度): 53.897557605550325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce a novel approach that equips LLM agents with introspection, enhancing consistency and adaptability in solving complex tasks. Our approach prompts LLM agents to decompose a given task into manageable subtasks (i.e., to make a plan), and to continuously introspect upon the suitability and results of their actions. We implement a three-fold introspective intervention: 1) anticipatory reflection on potential failures and alternative remedy before action execution, 2) post-action alignment with subtask objectives and backtracking with remedy to ensure utmost effort in plan execution, and 3) comprehensive review upon plan completion for future strategy refinement. By deploying and experimenting with this methodology - a zero-shot approach - within WebArena for practical tasks in web environments, our agent demonstrates superior performance over existing zero-shot methods. The experimental results suggest that our introspection-driven approach not only enhances the agent's ability to navigate unanticipated challenges through a robust mechanism of plan execution, but also improves efficiency by reducing the number of trials and plan revisions needed to achieve a task.
- Abstract(参考訳): 本研究では,LLMエージェントにイントロスペクションを付与し,複雑なタスクを解く上での一貫性と適応性を向上する手法を提案する。
我々のアプローチは, LLMエージェントに対して, あるタスクを管理可能なサブタスク(つまり計画の作成)に分解し, それらの動作の適合性や結果について継続的に検査するように促す。
イントロスペクティブ・イントロスペクティブ・イントロスペクティブ・イントロスペクティブ・イントロスペクティブ・イントロスペクティブ(intro
1) 行動実行前の潜在的な失敗及び代替策の予見
2 計画実行における最大限の努力を確保するため、サブタスク目標との事後調整及び救済の事後追跡
3)今後の戦略改善に向けた計画完了に関する総合的な見直し。
Web環境での実践的なタスクのためにWebArena内で,この手法をデプロイし,実験することにより,既存のゼロショット手法よりも優れた性能を示す。
実験結果から,我々のイントロスペクション駆動型アプローチは,計画実行の堅牢なメカニズムを通じて,予期せぬ課題をナビゲートするエージェントの能力を向上するだけでなく,課題達成に必要な試行回数や計画修正を削減して効率を向上させることが示唆された。
関連論文リスト
- InferAct: Inferring Safe Actions for LLM-Based Agents Through Preemptive Evaluation and Human Feedback [70.54226917774933]
本稿では、クリティカルアクションの実行前に潜在的なエラーを積極的に検出する新しいアプローチであるInferActを紹介する。
InferActはまた、人間のフィードバックを統合することで、不可逆的なリスクを防ぎ、アクターの意思決定プロセスを強化することができる。
論文 参考訳(メタデータ) (2024-07-16T15:24:44Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
反復的なステップレベルプロセスリファインメント(IPR)フレームワークは、エージェントトレーニングを強化するためのステップバイステップのガイダンスを提供する。
3つの複雑なエージェントタスクに関する我々の実験は、我々のフレームワークが様々な強力なベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2024-06-17T03:29:13Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
本稿では,ETOと呼ばれる探索に基づく軌道最適化手法を提案する。
この学習方法はオープンLLMエージェントの性能を向上させるために設計されている。
3つの複雑なタスクに関する実験は、ETOがベースライン性能をはるかに上回っていることを示す。
論文 参考訳(メタデータ) (2024-03-04T21:50:29Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - Task-Agnostic Continual Reinforcement Learning: Gaining Insights and
Overcoming Challenges [27.474011433615317]
連続学習(CL)は、一連のタスクから学習するモデルやエージェントの開発を可能にする。
タスクに依存しないCLとマルチタスク(MTL)エージェントのパフォーマンス差に寄与する要因について検討する。
論文 参考訳(メタデータ) (2022-05-28T17:59:00Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
モデルに基づく対向メタ強化学習(AdMRL)を提案する。
AdMRLは、タスクファミリ内のすべてのタスク間の最悪の部分最適化ギャップを最小限にすることを目的としている。
本手法をいくつかの連続制御ベンチマークで評価し,全てのタスクに対して最悪の性能を示す。
論文 参考訳(メタデータ) (2020-06-16T02:21:49Z) - Planning to Explore via Self-Supervised World Models [120.31359262226758]
Plan2Exploreは自己監督型強化学習エージェントである。
我々は、自己監督型探索と、新しいタスクへの迅速な適応に対する新しいアプローチを提案する。
Plan2Exploreは、訓練の監督やタスク固有の相互作用がなければ、自己監督型の探査方法よりも優れている。
論文 参考訳(メタデータ) (2020-05-12T17:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。