論文の概要: RoboArm-NMP: a Learning Environment for Neural Motion Planning
- arxiv url: http://arxiv.org/abs/2405.16335v1
- Date: Sat, 25 May 2024 19:28:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:47:39.520565
- Title: RoboArm-NMP: a Learning Environment for Neural Motion Planning
- Title(参考訳): RoboArm-NMP:ニューラルモーションプランニングのための学習環境
- Authors: Tom Jurgenson, Matan Sudry, Gal Avineri, Aviv Tamar,
- Abstract要約: 本稿では,ニューラルモーションプランニング(NMP)アルゴリズムの簡易かつ徹底的な評価を可能にする学習・評価環境であるRoboArm-NMPを提案する。
我々のPythonベースの環境は,学習制御ポリシ(教師付きあるいは強化学習ベース)のベースライン実装,PyBulletに基づくシミュレータ,古典的な動作計画解法を用いた解決インスタンスのデータを提供する。
我々は,RoboArm-NMPを用いて,いくつかの顕著なNMP設計点を比較し,最も優れた手法が,固定障害物のあるシーンにおける未確認目標の一般化に成功しているが,未確認障害物構成の一般化には困難であることを示す。
- 参考スコア(独自算出の注目度): 17.27962796113818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present RoboArm-NMP, a learning and evaluation environment that allows simple and thorough evaluations of Neural Motion Planning (NMP) algorithms, focused on robotic manipulators. Our Python-based environment provides baseline implementations for learning control policies (either supervised or reinforcement learning based), a simulator based on PyBullet, data of solved instances using a classical motion planning solver, various representation learning methods for encoding the obstacles, and a clean interface between the learning and planning frameworks. Using RoboArm-NMP, we compare several prominent NMP design points, and demonstrate that the best methods mostly succeed in generalizing to unseen goals in a scene with fixed obstacles, but have difficulty in generalizing to unseen obstacle configurations, suggesting focus points for future research.
- Abstract(参考訳): 本稿では,ロボットマニピュレータに着目したニューラルモーションプランニング(NMP)アルゴリズムの簡易かつ徹底的な評価を可能にする学習・評価環境であるRoboArm-NMPを提案する。
我々のPythonベースの環境は,学習制御ポリシ(教師付きあるいは強化学習ベース)のベースライン実装,PyBulletに基づくシミュレータ,古典的な動作計画解法を用いた解決インスタンスのデータ,障害物を符号化するさまざまな表現学習方法,学習と計画フレームワーク間のクリーンなインターフェースを提供する。
我々は,RoboArm-NMPを用いて,いくつかの顕著なNMP設計点を比較し,最適手法が固定障害物のあるシーンにおける未確認目標の一般化にほぼ成功しているが,未確認障害物構成の一般化には困難であり,今後の研究の焦点となることを示唆する。
関連論文リスト
- Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
本稿では,ロボットハンドアームシステムによる飛行物体の捕獲方法の学習を可能にするモジュラーフレームワークを提案する。
本フレームワークは,物体の軌跡予測を学習するオブジェクト状態推定器,(ii)捕捉対象のポーズのスコアとランク付けを学ぶキャッチポーズ品質ネットワーク,(iii)ロボットハンドをキャッチ前ポーズに移動させるように訓練されたリーチ制御ポリシ,(iv)ソフトキャッチ動作を行うように訓練された把握制御ポリシの5つのコアモジュールから構成される。
各モジュールと統合システムのシミュレーションにおいて、我々のフレームワークを広範囲に評価し、飛行における高い成功率を示す。
論文 参考訳(メタデータ) (2023-12-21T16:20:12Z) - Progressive Learning for Physics-informed Neural Motion Planning [1.9798034349981157]
モーションプランニングは、衝突のないロボットの動き経路を見つけるための高速な方法を必要とする、中核的なロボティクス問題の1つである。
近年の進歩は、運動計画のためのアイコン方程式を直接解く物理インフォームドNMPアプローチにつながっている。
本稿では,ニューラルネットワークをエキスパートデータなしで学習するための新しい進化的学習戦略を提案する。
論文 参考訳(メタデータ) (2023-06-01T12:41:05Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - A Survey on the Integration of Machine Learning with Sampling-based
Motion Planning [9.264471872135623]
本調査は、サンプリングベースモーションプランナー(SBMP)の計算効率と適用性を改善するための機械学習の取り組みを概観する。
まず、ノードサンプリング、衝突検出、距離または最も近い隣人、ローカルプランニング、終了条件など、SBMPのキーコンポーネントの強化に学習がどのように使われているかについて論じる。
また、機械学習を用いてロボットのデータ駆動モデルを提供し、それをSBMPで使用する方法についても論じている。
論文 参考訳(メタデータ) (2022-11-15T18:13:49Z) - Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and
Heuristic Rule-based Methods for Object Manipulation [118.27432851053335]
本稿では,SAPIEN ManiSkill Challenge 2021: No Interaction Trackにおいて,以下の2つのトラックを対象としたシステムの概要と比較分析を行った。
No Interactionは、事前に収集された実証軌道からの学習ポリシーのターゲットを追跡する。
このトラックでは,タスクを一連のサブタスクに分解することで,高品質なオブジェクト操作をトリガするHuristic Rule-based Method (HRM) を設計する。
各サブタスクに対して、ロボットアームに適用可能なアクションを予測するために、単純なルールベースの制御戦略が採用されている。
論文 参考訳(メタデータ) (2022-06-13T16:20:42Z) - NeRP: Neural Rearrangement Planning for Unknown Objects [49.191284597526]
我々は,多段階のニューラルオブジェクト再構成計画のためのディープラーニングに基づくアプローチであるNeRP(Neural Rearrangement Planning)を提案する。
NeRPは、シミュレーションデータに基づいてトレーニングされ、現実世界に一般化される、これまで見たことのないオブジェクトで動作する。
論文 参考訳(メタデータ) (2021-06-02T17:56:27Z) - An Open-Source Multi-Goal Reinforcement Learning Environment for Robotic
Manipulation with Pybullet [38.8947981067233]
この作業は、商用のMujocoエンジンをベースとしたOpenAI Gymマルチゴールロボット操作環境を、オープンソースのPybulletエンジンに再実装する。
ユーザーは、ジョイントコントロールモード、画像観察、ゴールにカスタマイズ可能なカメラと内蔵のカメラでアクセスできる新しいAPIをユーザーに提供します。
また,多段階・多ゴール・長水平・スパース報酬のロボット操作タスクのセットを設計し,これらの課題に対する新たな目標条件強化学習アルゴリズムの創出を目指す。
論文 参考訳(メタデータ) (2021-05-12T21:58:57Z) - POMP: Pomcp-based Online Motion Planning for active visual search in
indoor environments [89.43830036483901]
本稿では, 屋内環境におけるオブジェクトのアクティブビジュアルサーチ(AVS)の最適ポリシーを, オンライン設定で学習する問題に焦点をあてる。
提案手法はエージェントの現在のポーズとRGB-Dフレームを入力として使用する。
提案手法を利用可能なAVDベンチマークで検証し,平均成功率0.76,平均パス長17.1とした。
論文 参考訳(メタデータ) (2020-09-17T08:23:50Z) - Learning Compositional Neural Programs for Continuous Control [62.80551956557359]
スパース逆連続制御問題に対する新しい解法を提案する。
我々のソリューションはAlphaNPI-Xと呼ばれ、学習の3つの段階を含む。
我々はAlphaNPI-Xがスパース操作の課題に効果的に取り組むことを実証的に示す。
論文 参考訳(メタデータ) (2020-07-27T08:27:14Z) - Efficient Exploration in Constrained Environments with Goal-Oriented
Reference Path [15.679210057474922]
環境マップに基づいて衝突のない経路を予測できる深層畳み込みネットワークを訓練する。
これは強化学習アルゴリズムによって、経路を忠実に追従することを学ぶために使われる。
提案手法は,新しい環境へのサンプル効率と一般化能力を継続的に改善することを示す。
論文 参考訳(メタデータ) (2020-03-03T17:07:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。