論文の概要: Progressive Learning for Physics-informed Neural Motion Planning
- arxiv url: http://arxiv.org/abs/2306.00616v1
- Date: Thu, 1 Jun 2023 12:41:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 16:25:02.403598
- Title: Progressive Learning for Physics-informed Neural Motion Planning
- Title(参考訳): 物理インフォームドニューラルモーション計画の進歩的学習
- Authors: Ruiqi Ni and Ahmed H. Qureshi
- Abstract要約: モーションプランニングは、衝突のないロボットの動き経路を見つけるための高速な方法を必要とする、中核的なロボティクス問題の1つである。
近年の進歩は、運動計画のためのアイコン方程式を直接解く物理インフォームドNMPアプローチにつながっている。
本稿では,ニューラルネットワークをエキスパートデータなしで学習するための新しい進化的学習戦略を提案する。
- 参考スコア(独自算出の注目度): 1.9798034349981157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion planning (MP) is one of the core robotics problems requiring fast
methods for finding a collision-free robot motion path connecting the given
start and goal states. Neural motion planners (NMPs) demonstrate fast
computational speed in finding path solutions but require a huge amount of
expert trajectories for learning, thus adding a significant training
computational load. In contrast, recent advancements have also led to a
physics-informed NMP approach that directly solves the Eikonal equation for
motion planning and does not require expert demonstrations for learning.
However, experiments show that the physics-informed NMP approach performs
poorly in complex environments and lacks scalability in multiple scenarios and
high-dimensional real robot settings. To overcome these limitations, this paper
presents a novel and tractable Eikonal equation formulation and introduces a
new progressive learning strategy to train neural networks without expert data
in complex, cluttered, multiple high-dimensional robot motion planning
scenarios. The results demonstrate that our method outperforms state-of-the-art
traditional MP, data-driven NMP, and physics-informed NMP methods by a
significant margin in terms of computational planning speed, path quality, and
success rates. We also show that our approach scales to multiple complex,
cluttered scenarios and the real robot set up in a narrow passage environment.
The proposed method's videos and code implementations are available at
https://github.com/ruiqini/P-NTFields.
- Abstract(参考訳): 運動計画(MP)は、与えられた開始状態と目標状態を結ぶ衝突のないロボット運動経路を見つけるための高速な方法を必要とする中核ロボティクス問題の1つである。
ニューラルモーションプランナー(NMP)は、経路解を見つける際に高速な計算速度を示すが、学習には膨大な量の専門的軌跡を必要とするため、かなりの計算負荷がかかる。
対照的に、最近の進歩は、運動計画のためのアイコン方程式を直接解き、学習のための専門家によるデモンストレーションを必要としない物理学的なNMPアプローチにつながっている。
しかし、物理インフォームドNMPアプローチは複雑な環境では性能が悪く、複数のシナリオでのスケーラビリティや高次元のロボット設定に欠けていた。
このような制約を克服するため,我々は,複雑な,散らばった,複数の高次元ロボット動作計画シナリオにおいて,ニューラルネットワークを訓練する新たな漸進的学習戦略を提案する。
その結果,提案手法は計算計画速度,パス品質,成功率において,従来のMP法,データ駆動型NMP法,物理インフォームドNMP法よりも優れていた。
また,我々のアプローチは,複数の複雑で雑然としたシナリオと,狭い通路環境に設定された実際のロボットにスケールできることを示した。
提案手法のビデオとコードの実装はhttps://github.com/ruiqini/P-NTFields.comで公開されている。
関連論文リスト
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
ビデオからの自動パラメータ推定の最先端は、大規模データセット上で教師付きディープネットワークをトレーニングすることによって解決される。
単一ビデオから, 既知, 連続制御方程式の物理パラメータを推定する手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T09:44:54Z) - Physics-informed Neural Motion Planning on Constraint Manifolds [6.439800184169697]
Constrained Motion Planning (CMP) は、運動論的制約多様体上の与えられた開始と目標設定の間の衝突のない経路を見つけることを目的としている。
制約多様体上のアイコン方程式を解き、専門家データなしでCMPの神経機能を訓練する最初の物理インフォームドCMPフレームワークを提案する。
提案手法は,方向制約下での物体操作や,高次元6-DOFロボットマニピュレータを用いたドア開口など,シミュレーションおよび実世界の様々なCMP問題を効率的に解決する。
論文 参考訳(メタデータ) (2024-03-09T02:24:02Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
本稿では,ロボットのポーズ,障害物マップ,ロボットのフットプリントに基づいて,異なる衝突コストを返却するニューラルネットワークモデルを提案する。
私たちのアーキテクチャには、障害物マップとロボットフットプリントを埋め込みに変換するニューラルイメージエンコーダが含まれています。
Husky UGVモバイルロボットの実験は、我々のアプローチがリアルタイムで安全なローカルプランニングを可能にすることを示した。
論文 参考訳(メタデータ) (2023-10-25T05:00:21Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
組込みとエッジ優先化ポリシの両方を学習するために,データアグリゲーションを用いた時間符号化と模倣学習を用いたGNNベースのアプローチを提案する。
実験により, 提案手法は, 最先端の完全な動的計画アルゴリズムよりも, オンラインプランニングを著しく高速化できることが示された。
論文 参考訳(メタデータ) (2022-10-16T01:27:16Z) - NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning [1.9798034349981157]
乱雑なシナリオにおけるロボット動作計画のためのニューラルタイムフィールド(NTFields)を提案する。
本フレームワークは,Eykonal Equationと呼ばれる非線形一階PDEから得られる経路解を見つけるために,連続到着時間を生成する波動伝搬モデルを表す。
ギブソン・データセットを含む様々な散在した3次元環境において本手法の評価を行い,4-DOFおよび6-DOFロボットマニピュレータの動作計画問題を解く能力を実証した。
論文 参考訳(メタデータ) (2022-09-30T22:34:54Z) - Robot Motion Planning as Video Prediction: A Spatio-Temporal Neural
Network-based Motion Planner [16.26965535164238]
ニューラルネットワーク(NN)ベースの手法は、NNモデルの強力な学習能力と本質的に高い並列性により、ロボットの動作計画に魅力的なアプローチとして登場した。
本稿では,重要な時間的情報を完全に抽出し活用し,効率的なニューラルモーションプランナを構築するためのエンドツーエンド学習フレームワークであるNeural-Netを提案する。
論文 参考訳(メタデータ) (2022-08-24T03:45:27Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。