論文の概要: LLMs for User Interest Exploration: A Hybrid Approach
- arxiv url: http://arxiv.org/abs/2405.16363v1
- Date: Sat, 25 May 2024 21:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:47:39.496900
- Title: LLMs for User Interest Exploration: A Hybrid Approach
- Title(参考訳): LLMs for User Interest Exploration: A Hybrid Approach
- Authors: Jianling Wang, Haokai Lu, Yifan Liu, He Ma, Yueqi Wang, Yang Gu, Shuzhou Zhang, Ningren, Han, Shuchao Bi, Lexi Baugher, Ed Chi, Minmin Chen,
- Abstract要約: 従来のレコメンデーションシステムは、過去のユーザとイテムのインタラクションから学び、強化することで、強いフィードバックループを受ける。
本稿では,Large Language Models(LLM)と古典的レコメンデーションモデルを組み合わせたハイブリッド階層型フレームワークを提案する。
数十億のユーザを対象とする産業規模の商用プラットフォーム上で,このアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 16.549907455318035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional recommendation systems are subject to a strong feedback loop by learning from and reinforcing past user-item interactions, which in turn limits the discovery of novel user interests. To address this, we introduce a hybrid hierarchical framework combining Large Language Models (LLMs) and classic recommendation models for user interest exploration. The framework controls the interfacing between the LLMs and the classic recommendation models through "interest clusters", the granularity of which can be explicitly determined by algorithm designers. It recommends the next novel interests by first representing "interest clusters" using language, and employs a fine-tuned LLM to generate novel interest descriptions that are strictly within these predefined clusters. At the low level, it grounds these generated interests to an item-level policy by restricting classic recommendation models, in this case a transformer-based sequence recommender to return items that fall within the novel clusters generated at the high level. We showcase the efficacy of this approach on an industrial-scale commercial platform serving billions of users. Live experiments show a significant increase in both exploration of novel interests and overall user enjoyment of the platform.
- Abstract(参考訳): 従来のレコメンデーションシステムは、過去のユーザとイテムのインタラクションから学び、強化することで、強いフィードバックループの対象となり、それによって新しいユーザ関心の発見が制限される。
そこで本稿では,Large Language Models (LLM) と古典的レコメンデーションモデルを組み合わせたハイブリッド階層型フレームワークを提案する。
このフレームワークは、アルゴリズム設計者によって明確に決定できる「関心クラスタ」を通じて、LLMと古典的なレコメンデーションモデルとのインターフェイスを制御する。
言語を用いて「興味あるクラスタ」を表現することで次の新しい関心を推し進めており、あらかじめ定義されたクラスタ内で厳密な新しい関心記述を生成するために微調整のLLMを使用している。
低レベルでは、これらの生成された関心は、古典的なレコメンデーションモデルを制限することでアイテムレベルのポリシーに向けられ、この場合、トランスフォーマーベースのシーケンスレコメンデータは、高レベルで生成された新しいクラスタに該当するアイテムを返すことを推奨する。
数十億のユーザを対象とする産業規模の商用プラットフォーム上で,このアプローチの有効性を実証する。
ライブ実験は、新しい興味の探索とプラットフォーム全体のユーザ満足度の両方において、顕著な増加を示している。
関連論文リスト
- Generative Explore-Exploit: Training-free Optimization of Generative Recommender Systems using LLM Optimizers [29.739736497044664]
生成レコメンデーションを最適化するためのトレーニング不要なアプローチを提案する。
本研究では,高いエンゲージメントを持つ生成アイテムを活用できるだけでなく,隠された集団の嗜好を積極的に探索し,発見できるジェネレーティブな探索・探索手法を提案する。
論文 参考訳(メタデータ) (2024-06-07T20:41:59Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
大規模テキストコーパスで事前訓練されたLarge Language Models (LLMs) は、推奨システムを強化するための有望な道を示す。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
大規模言語モデル (LLM) は、理解、推論、指導において顕著な知性を示した。
本稿では, ブラックボックスレコメンデータモデルを説明するために, LLM を代理モデルとして利用することについて検討する。
効果的なアライメントを容易にするために,行動アライメント,意図アライメント,ハイブリッドアライメントという3つの手法を導入する。
論文 参考訳(メタデータ) (2023-11-18T03:05:43Z) - Reformulating Sequential Recommendation: Learning Dynamic User Interest with Content-enriched Language Modeling [18.297332953450514]
本稿では、事前学習した言語モデルの意味理解機能を活用してパーソナライズされたレコメンデーションを生成するLANCERを提案する。
我々のアプローチは、言語モデルとレコメンデーションシステムの間のギャップを埋め、より人間的なレコメンデーションを生み出します。
論文 参考訳(メタデータ) (2023-09-19T08:54:47Z) - ClusterSeq: Enhancing Sequential Recommender Systems with Clustering
based Meta-Learning [3.168790535780547]
ClusterSeqはメタラーニングクラスタリングに基づくシーケンスレコメンダシステムである。
ユーザシーケンスの動的情報を利用して、サイド情報がない場合でもアイテム予測精度を高める。
提案手法は平均相反ランク(MRR)において16~39%の大幅な改善を実現する。
論文 参考訳(メタデータ) (2023-07-25T18:53:24Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - Large Language Models Enable Few-Shot Clustering [88.06276828752553]
大規模言語モデルは、クエリ効率が良く、数発のセミ教師付きテキストクラスタリングを可能にするために、専門家のガイダンスを増幅できることを示す。
最初の2つのステージにLSMを組み込むことで、クラスタの品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-07-02T09:17:11Z) - GenRec: Large Language Model for Generative Recommendation [41.22833600362077]
本稿では,テキストデータに基づく大規模言語モデル(LLM)を用いたレコメンデーションシステムに対する革新的なアプローチを提案する。
GenRecはLLMの理解機能を使ってコンテキストを解釈し、ユーザの好みを学習し、関連するレコメンデーションを生成する。
本研究は,レコメンデーションシステムの領域に革命をもたらす上で,LLMに基づくジェネレーティブレコメンデーションの可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-07-02T02:37:07Z) - Hierarchical Reinforcement Learning for Modeling User Novelty-Seeking
Intent in Recommender Systems [26.519571240032967]
本稿では,階層型ユーザ新規検索意図をモデル化する階層型強化学習手法を提案する。
さらに, 階層的RL (HRL) エージェントの報酬関数に多様性と新規性に関連する測定を取り入れ, ユーザの探索を促進する。
論文 参考訳(メタデータ) (2023-06-02T12:02:23Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。