論文の概要: LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2506.21579v1
- Date: Mon, 16 Jun 2025 13:27:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-07 02:47:44.294479
- Title: LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation
- Title(参考訳): LLM2Rec:大規模言語モデルはシーケンシャルレコメンデーションのための強力な埋め込みモデルである
- Authors: Yingzhi He, Xiaohao Liu, An Zhang, Yunshan Ma, Tat-Seng Chua,
- Abstract要約: シーケンスレコメンデーションは、類似したユーザやアイテムの履歴行動から協調フィルタリング(CF)信号をモデル化することで、ユーザの将来のインタラクションを予測することを目的としている。
従来のシーケンシャルなレコメンダは、高次の共起パターンを通じてCF信号をキャプチャするIDベースの埋め込みに依存している。
大規模言語モデル(LLM)の最近の進歩は、テキスト記述からアイテム表現を導出するテキストベースのレコメンデーションアプローチを動機付けている。
理想的な埋め込みモデルは、ドメイン内およびドメイン外のレコメンデーションパフォーマンスを改善するために、CF信号とリッチなセマンティック表現をシームレスに統合すべきである、と我々は主張する。
- 参考スコア(独自算出の注目度): 49.78419076215196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential recommendation aims to predict users' future interactions by modeling collaborative filtering (CF) signals from historical behaviors of similar users or items. Traditional sequential recommenders predominantly rely on ID-based embeddings, which capture CF signals through high-order co-occurrence patterns. However, these embeddings depend solely on past interactions, lacking transferable knowledge to generalize to unseen domains. Recent advances in large language models (LLMs) have motivated text-based recommendation approaches that derive item representations from textual descriptions. While these methods enhance generalization, they fail to encode CF signals-i.e., latent item correlations and preference patterns-crucial for effective recommendation. We argue that an ideal embedding model should seamlessly integrate CF signals with rich semantic representations to improve both in-domain and out-of-domain recommendation performance. To this end, we propose LLM2Rec, a novel embedding model tailored for sequential recommendation, integrating the rich semantic understanding of LLMs with CF awareness. Our approach follows a two-stage training framework: (1) Collaborative Supervised Fine-tuning, which adapts LLMs to infer item relationships based on historical interactions, and (2) Item-level Embedding Modeling, which refines these specialized LLMs into structured item embedding models that encode both semantic and collaborative information. Extensive experiments on real-world datasets demonstrate that LLM2Rec effectively improves recommendation quality across both in-domain and out-of-domain settings. Our findings highlight the potential of leveraging LLMs to build more robust, generalizable embedding models for sequential recommendation. Our codes are available at https://github.com/HappyPointer/LLM2Rec.
- Abstract(参考訳): シーケンスレコメンデーションは、類似したユーザやアイテムの履歴行動から協調フィルタリング(CF)信号をモデル化することで、ユーザの将来のインタラクションを予測することを目的としている。
従来のシーケンシャルなレコメンダは、主にIDベースの埋め込みに依存しており、高次共起パターンを通じてCF信号をキャプチャする。
しかし、これらの埋め込みは過去の相互作用にのみ依存し、目に見えない領域に一般化する伝達可能な知識が欠如している。
大規模言語モデル(LLM)の最近の進歩は、テキスト記述からアイテム表現を導出するテキストベースのレコメンデーションアプローチを動機付けている。
これらの手法は一般化を促進するが、有効な推奨のためにCF信号、すなわち潜在アイテム相関と選好パターンの符号化に失敗する。
理想的な埋め込みモデルは、ドメイン内およびドメイン外のレコメンデーションパフォーマンスを改善するために、CF信号とリッチなセマンティック表現をシームレスに統合すべきである、と我々は主張する。
そこで本研究では,LLMのセマンティック理解をCF認識と統合した,逐次的なレコメンデーションに適した新しい埋め込みモデル LLM2Rec を提案する。
本手法は,(1) 歴史的相互作用に基づく項目関係の推測にLLMを適用した協調的監視ファインタニング,(2) 項目レベルの埋め込みモデリング,そして(2) 項目レベルの埋め込みモデリングにより,これらの特殊なLPMを,意味情報と協調情報の両方をエンコードする構造化項目埋め込みモデルに改良する。
実世界のデータセットに関する大規模な実験により、LLM2Recはドメイン内とドメイン外の両方で推奨品質を効果的に改善することを示した。
本研究は,LLMを利用してより堅牢で汎用的な埋め込みモデルを構築し,シーケンシャルなレコメンデーションを実現する可能性を明らかにする。
私たちのコードはhttps://github.com/HappyPointer/LLM2Rec.orgで公開されています。
関連論文リスト
- DeepRec: Towards a Deep Dive Into the Item Space with Large Language Model Based Recommendation [83.21140655248624]
大型言語モデル (LLM) はレコメンダシステム (RS) に導入された。
本稿では, LLM と TRM の自律的マルチターンインタラクションを実現する新しい RS である DeepRec を提案する。
公開データセットの実験では、DeepRecは従来のものとLLMベースのベースラインの両方で大幅にパフォーマンスが向上している。
論文 参考訳(メタデータ) (2025-05-22T15:49:38Z) - Towards a Unified Paradigm: Integrating Recommendation Systems as a New Language in Large Models [33.02146794292383]
大規模モデルにおける新しい言語としてのレコメンデーションシステム(Integrating Recommendation Systems as a New Language in Large Models)について紹介する。
RSLLMは、従来のレコメンデーションモデルからのIDベースのアイテム埋め込みとテキストアイテムの特徴を組み合わせた独自のプロンプト方式を使用している。
ユーザのシーケンシャルな振る舞いを別の言語として扱い、プロジェクタを使用してID埋め込みとLLMの入力空間を整列する。
論文 参考訳(メタデータ) (2024-12-22T09:08:46Z) - HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
大規模言語モデル(LLM)は様々な分野で顕著な成功を収めており、いくつかの研究がレコメンデーションシステムにおいてその可能性を探求している。
逐次レコメンデーションシステムを強化するために,新しい階層型大規模言語モデル (HLLM) アーキテクチャを提案する。
HLLMは,項目特徴抽出とユーザ関心モデリングの両方に 7B パラメータを利用する構成で,優れたスケーラビリティを実現している。
論文 参考訳(メタデータ) (2024-09-19T13:03:07Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
大規模言語モデル (LLM) はレコメンデーションシステムにおいて顕著な性能を示した。
LLMと協調モデルのための新しいプラグ・アンド・プレイアライメントフレームワークを提案する。
我々の手法は既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-08-15T15:56:23Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
逐次リコメンデータシステム(SRS)は,ユーザの過去のインタラクションシーケンスに基づいて,ユーザが好む次の項目を予測する。
様々なAIアプリケーションにおける大規模言語モデル(LLM)の台頭に触発されて、LLMベースのSRSの研究が急増している。
我々は,大きめの粒度適応の上に構築された逐次レコメンデーションモデルであるDARecを提案する。
論文 参考訳(メタデータ) (2024-08-14T10:03:40Z) - CALRec: Contrastive Alignment of Generative LLMs for Sequential Recommendation [18.986613405565514]
大規模言語モデル(LLM)は、シーケンシャルなレコメンデーションのために大量のテキストコーパスで事前訓練される。
本稿では,2つの対照的な損失と言語モデリング損失を混合して,事前学習したLLMを2tower方式で微調整する2段階のLLMファインタニングフレームワークを提案する。
我々のモデルは、多くの最先端のベースラインを著しく上回ります。
論文 参考訳(メタデータ) (2024-05-03T18:51:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。