論文の概要: Video Prediction Models as General Visual Encoders
- arxiv url: http://arxiv.org/abs/2405.16382v1
- Date: Sat, 25 May 2024 23:55:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:37:49.517982
- Title: Video Prediction Models as General Visual Encoders
- Title(参考訳): 一般的なビジュアルエンコーダとしての映像予測モデル
- Authors: James Maier, Nishanth Mohankumar,
- Abstract要約: 研究者らは、映像予測モデルを一般的な視覚エンコーダとして使用し、重要な空間的・時間的情報をキャプチャする能力を活用することを提案する。
人間の視覚研究にインスパイアされたこの手法は、画像から動きを表す潜在空間を開発することを目的としている。
実験には、事前訓練されたビデオ生成モデルの適用、潜伏空間の分析、フォアグラウンド・バックグラウンド・セグメンテーションのためのカスタムデコーダのトレーニングが含まれる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the potential of open-source video conditional generation models as encoders for downstream tasks, focusing on instance segmentation using the BAIR Robot Pushing Dataset. The researchers propose using video prediction models as general visual encoders, leveraging their ability to capture critical spatial and temporal information which is essential for tasks such as instance segmentation. Inspired by human vision studies, particularly Gestalts principle of common fate, the approach aims to develop a latent space representative of motion from images to effectively discern foreground from background information. The researchers utilize a 3D Vector-Quantized Variational Autoencoder 3D VQVAE video generative encoder model conditioned on an input frame, coupled with downstream segmentation tasks. Experiments involve adapting pre-trained video generative models, analyzing their latent spaces, and training custom decoders for foreground-background segmentation. The findings demonstrate promising results in leveraging generative pretext learning for downstream tasks, working towards enhanced scene analysis and segmentation in computer vision applications.
- Abstract(参考訳): 本研究では,BAIR Robot Pushing Datasetを用いたインスタンスセグメンテーションに着目し,下流タスクのエンコーダとして,オープンソースのビデオ条件生成モデルの可能性を検討する。
研究者らは、ビデオ予測モデルを一般的なビジュアルエンコーダとして使用し、インスタンスセグメンテーションのようなタスクに不可欠な重要な空間的・時間的情報をキャプチャする能力を活用することを提案する。
人間の視覚研究、特にゲシュタルツの共通運命原理にインスパイアされたこの手法は、画像から動きを表す潜在空間を開発し、背景情報から効果的に前景を識別することを目的としている。
研究者らは3次元ベクトル量子変分オートエンコーダ3次元VQVAEビデオ生成エンコーダモデルを用いて、下流セグメンテーションタスクと組み合わせた。
実験には、事前訓練されたビデオ生成モデルの適用、潜伏空間の分析、フォアグラウンド・バックグラウンド・セグメンテーションのためのカスタムデコーダのトレーニングが含まれる。
この結果は、下流タスクに生成前文学習を活用でき、コンピュータビジョンアプリケーションにおけるシーン分析とセグメンテーションの強化に寄与することを示す。
関連論文リスト
- Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
我々は,過去を前提とした将来のセンサ観測の課題を探求する。
マルチモーダリティを扱える画像拡散モデルの大規模事前学習を活用する。
我々は、屋内と屋外のシーンにまたがる多様なビデオのセットについて、ビデオ予測のためのベンチマークを作成する。
論文 参考訳(メタデータ) (2024-04-17T16:56:31Z) - Appearance-based Refinement for Object-Centric Motion Segmentation [95.80420062679104]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では, 正確な流量予測マスクを模範として, 簡単な選択機構を用いる。
パフォーマンスは、DAVIS、YouTubeVOS、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - Conditional Generative Modeling for Images, 3D Animations, and Video [4.422441608136163]
コンピュータビジョンのための生成モデリングの分野における革新を推進しようとする論文。
研究は、ノイズと視覚データの変換を提供するアーキテクチャと、生成タスクや3Dコンテンツ操作にエンコーダ・デコーダアーキテクチャを適用することに焦点を当てている。
論文 参考訳(メタデータ) (2023-10-19T21:10:39Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
本稿では,3次元オートデコーダをコアとした静的・明瞭な3次元アセットの生成に対して,新しいアプローチを提案する。
3D Autodecoderフレームワークは、ターゲットデータセットから学んだプロパティを潜時空間に埋め込む。
次に、適切な中間体積潜在空間を特定し、ロバストな正規化と非正規化演算を導入する。
論文 参考訳(メタデータ) (2023-07-07T17:59:14Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
本稿では,暗黙的オブジェクトエンコーダ,ニューラルレージアンスフィールド(NeRF),グラフニューラルネットワークに基づく画像観測から構成予測モデルを学習する手法を提案する。
NeRFは3D以前の強みから、シーンを表現するための一般的な選択肢となっている。
提案手法では,学習した潜時空間にRTを応用し,そのモデルと暗黙のオブジェクトエンコーダを用いて潜時空間を情報的かつ効率的にサンプリングする。
論文 参考訳(メタデータ) (2022-02-24T01:31:29Z) - Autoencoding Video Latents for Adversarial Video Generation [0.0]
AVLAEは2ストリームの遅延オートエンコーダであり、ビデオ配信は敵の訓練によって学習される。
提案手法は, 発生器の明示的な構造構成を伴わずとも, 動きや外見の符号を乱すことを学習できることを実証する。
論文 参考訳(メタデータ) (2022-01-18T11:42:14Z) - PreViTS: Contrastive Pretraining with Video Tracking Supervision [53.73237606312024]
PreViTSは、同じオブジェクトを含むクリップを選択するための教師なしSSLフレームワークである。
PreViTSはフレーム領域を空間的に制約し、モデルから学習し、意味のあるオブジェクトを見つけるように訓練する。
モーメントコントラスト(MoCo)エンコーダを,PreViTSを用いてVGG-SoundとKinetics-400データセットでトレーニングする。
論文 参考訳(メタデータ) (2021-12-01T19:49:57Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
本稿では,複数の動的物体の6-DoF動作,エゴモーション,深度を,監督なしで一眼レフカメラで明示的にモデル化する,エンドツーエンドのジョイントトレーニングフレームワークを提案する。
筆者らのフレームワークは,最先端の深度・動き推定法より優れていた。
論文 参考訳(メタデータ) (2021-02-04T14:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。