論文の概要: VideoPCDNet: Video Parsing and Prediction with Phase Correlation Networks
- arxiv url: http://arxiv.org/abs/2506.19621v1
- Date: Tue, 24 Jun 2025 13:39:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.65019
- Title: VideoPCDNet: Video Parsing and Prediction with Phase Correlation Networks
- Title(参考訳): VideoPCDNet:位相相関ネットワークによるビデオ解析と予測
- Authors: Noel José Rodrigues Vicente, Enrique Lehner, Angel Villar-Corrales, Jan Nogga, Sven Behnke,
- Abstract要約: 本稿では,オブジェクト中心のビデオ分解と予測のための教師なしフレームワークであるVideoPCDNetを提案する。
本モデルは,学習対象のプロトタイプの変換版として表現されるオブジェクトコンポーネントに動画を解析するために,周波数領域位相相関法を用いる。
- 参考スコア(独自算出の注目度): 14.933024847952618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and predicting video content is essential for planning and reasoning in dynamic environments. Despite advancements, unsupervised learning of object representations and dynamics remains challenging. We present VideoPCDNet, an unsupervised framework for object-centric video decomposition and prediction. Our model uses frequency-domain phase correlation techniques to recursively parse videos into object components, which are represented as transformed versions of learned object prototypes, enabling accurate and interpretable tracking. By explicitly modeling object motion through a combination of frequency domain operations and lightweight learned modules, VideoPCDNet enables accurate unsupervised object tracking and prediction of future video frames. In our experiments, we demonstrate that VideoPCDNet outperforms multiple object-centric baseline models for unsupervised tracking and prediction on several synthetic datasets, while learning interpretable object and motion representations.
- Abstract(参考訳): 動的環境下での計画と推論には,映像コンテンツの理解と予測が不可欠である。
進歩にもかかわらず、対象表現と力学の教師なし学習は依然として困難である。
本稿では,オブジェクト中心のビデオ分解と予測のための教師なしフレームワークであるVideoPCDNetを提案する。
我々のモデルは、周波数領域位相相関法を用いて、映像を学習対象のプロトタイプの変換版として表現したオブジェクトコンポーネントに再帰的に解析し、正確かつ解釈可能な追跡を可能にする。
周波数領域演算と軽量学習モジュールの組み合わせにより、オブジェクトの動きを明示的にモデル化することにより、ビデオPCDNetは、正確な教師なしオブジェクト追跡と将来のビデオフレームの予測を可能にする。
本研究では,ビデオPCDNetが複数の合成データセットの教師なし追跡と予測のために,解釈可能なオブジェクトと動作表現を学習しながら,複数のオブジェクト中心ベースラインモデルより優れていることを示す。
関連論文リスト
- Object-Centric Image to Video Generation with Language Guidance [17.50161162624179]
TextOCVPは、テキスト記述によってガイドされる画像からビデオ生成のためのオブジェクト中心モデルである。
提案手法は,テキストガイダンスを取り入れたオブジェクトのダイナミクスとインタラクションを共同でモデル化することにより,正確かつ制御可能な予測を導出する。
論文 参考訳(メタデータ) (2025-02-17T10:46:47Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - A Control-Centric Benchmark for Video Prediction [69.22614362800692]
本稿では,アクション条件付きビデオ予測のベンチマークを,制御ベンチマークの形式で提案する。
私たちのベンチマークには、11のタスクカテゴリと310のタスクインスタンス定義を備えたシミュレーション環境が含まれています。
次に、ベンチマークを活用して、スケールするモデルサイズ、トレーニングデータの量、モデルアンサンブルの影響を調査します。
論文 参考訳(メタデータ) (2023-04-26T17:59:45Z) - Object-Centric Video Prediction via Decoupling of Object Dynamics and
Interactions [27.112210225969733]
本稿では,映像系列の構造を抽出し,オブジェクトのダイナミックスやインタラクションを視覚的観察からモデル化する,オブジェクト中心のビデオ予測タスクのための新しいフレームワークを提案する。
そこで本研究では,時間的ダイナミクスとオブジェクトの相互作用の処理を分離した2つのオブジェクト中心ビデオ予測器(OCVP)トランスフォーマモジュールを提案する。
実験では、OCVP予測器を用いたオブジェクト中心の予測フレームワークが、2つの異なるデータセットにおけるオブジェクト非依存のビデオ予測モデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-23T08:29:26Z) - Wide and Narrow: Video Prediction from Context and Motion [54.21624227408727]
本稿では,これらの相補的属性を統合し,深層ネットワークを通した複雑なピクセルのダイナミックスを予測するフレームワークを提案する。
本研究では,非局所的な近隣表現を集約し,過去のフレーム上の文脈情報を保存するグローバルなコンテキスト伝搬ネットワークを提案する。
また,移動オブジェクトの動作をメモリに格納することで,適応的なフィルタカーネルを生成するローカルフィルタメモリネットワークを考案した。
論文 参考訳(メタデータ) (2021-10-22T04:35:58Z) - Grounding Physical Concepts of Objects and Events Through Dynamic Visual
Reasoning [84.90458333884443]
本稿では、物理オブジェクトやイベントをビデオや言語から基盤とする統合フレームワークであるDynamic Concept Learner(DCL)を紹介する。
dclは、フレーム、グランドビジュアルプロパティ、物理イベントのオブジェクトを検出し、関連付けることができ、イベント間の因果関係を理解し、将来の予測と偽りの予測を行い、これらのプレゼンテーションをクエリに利用することができる。
DCLは、地上トラス属性や衝突ラベルをトレーニング用シミュレーションから使用することなく、困難な因果的ビデオ推論データセットであるCLEVRERで最先端のパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-03-30T17:59:48Z) - Self-Supervision by Prediction for Object Discovery in Videos [62.87145010885044]
本稿では,この予測タスクを自己監督として利用し,画像シーケンス表現のための新しいオブジェクト中心モデルを構築する。
私たちのフレームワークは、手動アノテーションや事前トレーニングされたネットワークを使わずにトレーニングできます。
最初の実験では、提案されたパイプラインがオブジェクト中心のビデオ予測への有望なステップであることを確認した。
論文 参考訳(メタデータ) (2021-03-09T19:14:33Z) - Motion Segmentation using Frequency Domain Transformer Networks [29.998917158604694]
本稿では,前景と背景を別々にモデル化することで,次のフレームを予測できる新しいエンドツーエンド学習アーキテクチャを提案する。
我々の手法は、ビデオラダーネットワークや予測ゲーテッドピラミドなど、広く使われているビデオ予測手法よりも優れた合成データが得られる。
論文 参考訳(メタデータ) (2020-04-18T15:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。