論文の概要: Node Identifiers: Compact, Discrete Representations for Efficient Graph Learning
- arxiv url: http://arxiv.org/abs/2405.16435v2
- Date: Fri, 18 Oct 2024 06:56:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:22:18.426674
- Title: Node Identifiers: Compact, Discrete Representations for Efficient Graph Learning
- Title(参考訳): Node Identifiers: グラフ学習のためのコンパクトで離散的な表現
- Authors: Yuankai Luo, Hongkang Li, Qijiong Liu, Lei Shi, Xiao-Ming Wu,
- Abstract要約: 本稿では、高コンパクト(典型的には6-15次元)、離散(int4型)、解釈可能なノード表現を生成する新しいエンドツーエンドフレームワークを提案する。
ベクトル量子化を用いることで、グラフニューラルネットワーク(GNN)の複数層からの連続ノード埋め込みを離散コードに圧縮する。
これらのノードIDはグラフデータの高レベルな抽象化をキャプチャし、従来のGNN埋め込みに欠けている解釈性を提供する。
- 参考スコア(独自算出の注目度): 10.018324412893287
- License:
- Abstract: We present a novel end-to-end framework that generates highly compact (typically 6-15 dimensions), discrete (int4 type), and interpretable node representations, termed node identifiers (node IDs), to tackle inference challenges on large-scale graphs. By employing vector quantization, we compress continuous node embeddings from multiple layers of a Graph Neural Network (GNN) into discrete codes, applicable under both self-supervised and supervised learning paradigms. These node IDs capture high-level abstractions of graph data and offer interpretability that traditional GNN embeddings lack. Extensive experiments on 34 datasets, encompassing node classification, graph classification, link prediction, and attributed graph clustering tasks, demonstrate that the generated node IDs significantly enhance speed and memory efficiency while achieving competitive performance compared to current state-of-the-art methods.
- Abstract(参考訳): 本稿では,大規模グラフにおける推論問題に対処するため,高コンパクト(典型的には6~15次元),離散(int4型),解釈可能なノード表現,いわゆるノード識別子(ノードID)を新たに生成するフレームワークを提案する。
ベクトル量子化を用いることで、グラフニューラルネットワーク(GNN)の複数層からの連続ノード埋め込みを離散コードに圧縮し、自己教師付き学習パラダイムと教師付き学習パラダイムの両方に適用する。
これらのノードIDはグラフデータの高レベルな抽象化をキャプチャし、従来のGNN埋め込みに欠けている解釈性を提供する。
ノード分類、グラフ分類、リンク予測、属性付きグラフクラスタリングタスクを含む34のデータセットに対する大規模な実験により、生成されたノードIDは、現在の最先端手法と比較して競合性能を達成しつつ、スピードとメモリ効率を大幅に向上することを示した。
関連論文リスト
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRAREはノード相対エントロピーと深層強化学習に基づいて構築されたフレームワークである。
革新的なノード相対エントロピーは、ノードペア間の相互情報を測定するために使用される。
グラフトポロジを最適化するために,深層強化学習に基づくアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-15T11:30:18Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
グラフ表現学習法は、ネットワーク内のノードの数値ベクトル表現を生成する。
本研究では,ランダムグラフ上で事前学習されたモデルであるInferential SIR-GNを提案し,ノード表現を高速に計算する。
このモデルではノードの構造的役割情報を捉えることができ、ノードやグラフの分類タスクにおいて、目に見えないネットワーク上で優れた性能を示すことができる。
論文 参考訳(メタデータ) (2021-11-08T20:56:37Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
階層型推論グラフネットワークの学習による顔の親和性検証の問題点について検討する。
より強力で柔軟なキャパシティを利用するために,星型推論グラフネットワーク(S-RGN)を開発した。
また、より強力で柔軟なキャパシティを利用する階層型推論グラフネットワーク(H-RGN)も開発しています。
論文 参考訳(メタデータ) (2021-09-06T03:16:56Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
本稿では,グラフ InfoClust というグラフ表現学習手法を提案する。
同社はさらに、クラスタレベルの情報コンテンツをキャプチャしようとしている。
この最適化により、ノード表現はよりリッチな情報とノイズ相互作用をキャプチャし、それによって品質が向上する。
論文 参考訳(メタデータ) (2020-09-15T09:33:20Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Graph Highway Networks [77.38665506495553]
グラフ畳み込みネットワーク(GCN)は、グラフ表現の有効性と効率性から、グラフ表現の学習に広く利用されている。
彼らは、多くの層が積み重ねられたとき、学習された表現が類似したベクトルに収束するという悪名高い過度に滑らかな問題に悩まされる。
本稿では,GCN学習プロセスにおける均一性と不均一性との間のトレードオフのバランスをとるため,ゲーティングユニットを利用したグラフハイウェイネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-09T16:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。