3D View Optimization for Improving Image Aesthetics
- URL: http://arxiv.org/abs/2405.16443v1
- Date: Sun, 26 May 2024 05:59:22 GMT
- Title: 3D View Optimization for Improving Image Aesthetics
- Authors: Taichi Uchida, Yoshihiro Kanamori, Yuki Endo,
- Abstract summary: We introduce a pioneering method that employs 3D operations to simulate the conditions at the moment of capture retrospectively.
Our approach extrapolates the input image and then reconstructs the 3D scene from the extrapolated image, followed by an optimization to identify camera parameters and image aspect ratios that yield the best 3D view with enhanced aesthetics.
- Score: 1.529342790344802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving aesthetically pleasing photography necessitates attention to multiple factors, including composition and capture conditions, which pose challenges to novices. Prior research has explored the enhancement of photo aesthetics post-capture through 2D manipulation techniques; however, these approaches offer limited search space for aesthetics. We introduce a pioneering method that employs 3D operations to simulate the conditions at the moment of capture retrospectively. Our approach extrapolates the input image and then reconstructs the 3D scene from the extrapolated image, followed by an optimization to identify camera parameters and image aspect ratios that yield the best 3D view with enhanced aesthetics. Comparative qualitative and quantitative assessments reveal that our method surpasses traditional 2D editing techniques with superior aesthetics.
Related papers
- GaVS: 3D-Grounded Video Stabilization via Temporally-Consistent Local Reconstruction and Rendering [54.489285024494855]
Video stabilization is pivotal for video processing, as it removes unwanted shakiness while preserving the original user motion intent.<n>Existing approaches, depending on the domain they operate, suffer from several issues that degrade the user experience.<n>We introduce textbfGaVS, a novel 3D-grounded approach that reformulates video stabilization as a temporally-consistent local reconstruction and rendering' paradigm.
arXiv Detail & Related papers (2025-06-30T15:24:27Z) - Photography Perspective Composition: Towards Aesthetic Perspective Recommendation [8.915832522709529]
Traditional photography composition approaches are dominated by 2D cropping-based methods.<n>Professional photographers often employ perspective adjustment as a form of 3D recomposition.<n>We propose photography perspective composition (PPC), extending beyond traditional cropping-based methods.
arXiv Detail & Related papers (2025-05-27T03:04:48Z) - SPARK: Self-supervised Personalized Real-time Monocular Face Capture [6.093606972415841]
Current state of the art approaches have the ability to regress parametric 3D face models in real-time across a wide range of identities.
We propose a method for high-precision 3D face capture taking advantage of a collection of unconstrained videos of a subject as prior information.
arXiv Detail & Related papers (2024-09-12T12:30:04Z) - Customize-It-3D: High-Quality 3D Creation from A Single Image Using
Subject-Specific Knowledge Prior [33.45375100074168]
We present a novel two-stage approach that fully utilizes the information provided by the reference image to establish a customized knowledge prior for image-to-3D generation.
Experiments showcase the superiority of our method, Customize-It-3D, outperforming previous works by a substantial margin.
arXiv Detail & Related papers (2023-12-15T19:07:51Z) - Unifying Correspondence, Pose and NeRF for Pose-Free Novel View Synthesis from Stereo Pairs [57.492124844326206]
This work delves into the task of pose-free novel view synthesis from stereo pairs, a challenging and pioneering task in 3D vision.
Our innovative framework, unlike any before, seamlessly integrates 2D correspondence matching, camera pose estimation, and NeRF rendering, fostering a synergistic enhancement of these tasks.
arXiv Detail & Related papers (2023-12-12T13:22:44Z) - Fine Dense Alignment of Image Bursts through Camera Pose and Depth
Estimation [45.11207941777178]
This paper introduces a novel approach to the fine alignment of images in a burst captured by a handheld camera.
The proposed algorithm establishes dense correspondences by optimizing both the camera motion and surface depth and orientation at every pixel.
arXiv Detail & Related papers (2023-12-08T17:22:04Z) - Disjoint Pose and Shape for 3D Face Reconstruction [4.096453902709292]
We propose an end-to-end pipeline that disjointly solves for pose and shape to make the optimization stable and accurate.
The proposed method achieves end-to-end topological consistency, enables iterative face pose refinement procedure, and show remarkable improvement on both quantitative and qualitative results.
arXiv Detail & Related papers (2023-08-26T15:18:32Z) - Enhanced Stable View Synthesis [86.69338893753886]
We introduce an approach to enhance the novel view synthesis from images taken from a freely moving camera.
The introduced approach focuses on outdoor scenes where recovering accurate geometric scaffold and camera pose is challenging.
arXiv Detail & Related papers (2023-03-30T01:53:14Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - State of the Art in Dense Monocular Non-Rigid 3D Reconstruction [100.9586977875698]
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics.
This survey focuses on state-of-the-art methods for dense non-rigid 3D reconstruction of various deformable objects and composite scenes from monocular videos or sets of monocular views.
arXiv Detail & Related papers (2022-10-27T17:59:53Z) - 3D Magic Mirror: Clothing Reconstruction from a Single Image via a
Causal Perspective [96.65476492200648]
This research aims to study a self-supervised 3D clothing reconstruction method.
It recovers the geometry shape, and texture of human clothing from a single 2D image.
arXiv Detail & Related papers (2022-04-27T17:46:55Z) - 3D Hierarchical Refinement and Augmentation for Unsupervised Learning of
Depth and Pose from Monocular Video [16.613015664195224]
A novel unsupervised training framework is proposed with 3D hierarchical refinement and augmentation using explicit 3D geometry.
In this framework, the depth and pose estimations are hierarchically and mutually coupled to refine the estimated pose layer by layer.
Our visual odometry outperforms all recent unsupervised monocular learning-based methods and achieves competitive performance to the geometry-based method.
arXiv Detail & Related papers (2021-12-06T13:46:48Z) - Differentiable Rendering with Perturbed Optimizers [85.66675707599782]
Reasoning about 3D scenes from their 2D image projections is one of the core problems in computer vision.
Our work highlights the link between some well-known differentiable formulations and randomly smoothed renderings.
We apply our method to 3D scene reconstruction and demonstrate its advantages on the tasks of 6D pose estimation and 3D mesh reconstruction.
arXiv Detail & Related papers (2021-10-18T08:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.