Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models
- URL: http://arxiv.org/abs/2405.16516v1
- Date: Sun, 26 May 2024 10:58:22 GMT
- Title: Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models
- Authors: Kun Huang, Xiao Ma, Yuhan Zhang, Na Su, Songtao Yuan, Yong Liu, Qiang Chen, Huazhu Fu,
- Abstract summary: We introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way.
Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods.
- Score: 48.87160158792048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical coherence tomography (OCT) image analysis plays an important role in the field of ophthalmology. Current successful analysis models rely on available large datasets, which can be challenging to be obtained for certain tasks. The use of deep generative models to create realistic data emerges as a promising approach. However, due to limitations in hardware resources, it is still difficulty to synthesize high-resolution OCT volumes. In this paper, we introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way. First, we propose non-holistic autoencoders to efficiently build a bidirectional mapping between high-resolution volume space and low-resolution latent space. In tandem with autoencoders, we propose cascaded diffusion processes to synthesize high-resolution OCT volumes with a global-to-local refinement process, amortizing the memory and computational demands. Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods. Moreover, performance gains on two down-stream fine-grained segmentation tasks demonstrate the benefit of the proposed method in training deep learning models for medical imaging tasks. The code is public available at: https://github.com/nicetomeetu21/CA-LDM.
Related papers
- Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation [0.0]
This work proposes a memory-efficient patch-wise denoising diffusion probabilistic model (DDPM) for generating synthetic medical images.
Our approach generates high-utility synthetic images with nodule segmentation while efficiently managing memory constraints.
We evaluate the method in two scenarios: training a segmentation model exclusively on synthetic data, and augmenting real-world training data with synthetic images.
arXiv Detail & Related papers (2024-10-16T13:20:57Z) - Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
In clinical practice, 2D magnetic resonance (MR) sequences are widely adopted. While individual 2D slices can be stacked to form a 3D volume, the relatively large slice spacing can pose challenges for visualization and subsequent analysis tasks.
To reduce slice spacing, deep-learning-based super-resolution techniques are widely investigated.
Most current solutions require a substantial number of paired high-resolution and low-resolution images for supervised training, which are typically unavailable in real-world scenarios.
arXiv Detail & Related papers (2024-06-10T02:20:26Z) - 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
We propose a novel slice-based latent diffusion architecture to address the complexities of volumetric data generation.
This approach extends the joint distribution modeling of medical images and their associated masks, allowing a simultaneous generation of both under data-scarce regimes.
Our architecture can be conditioned by tumor characteristics, including size, shape, and relative position, thereby providing a diverse range of tumor variations.
arXiv Detail & Related papers (2024-06-08T09:53:45Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural
Representations via Knowledge Distillation [31.44962361819199]
Implicit Neural Representations (INRs) have recently exhibited immense potential in the field of scientific visualization.
In this paper, we introduce HyperINR, a novel hypernetwork architecture capable of directly predicting the weights for a compact INR.
By harnessing an ensemble of multiresolution hash encoding units in unison, the resulting INR attains state-of-the-art inference performance.
arXiv Detail & Related papers (2023-04-09T08:10:10Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
This paper introduces an Implicit Diffusion Model (IDM) for high-fidelity continuous image super-resolution.
IDM integrates an implicit neural representation and a denoising diffusion model in a unified end-to-end framework.
The scaling factor regulates the resolution and accordingly modulates the proportion of the LR information and generated features in the final output.
arXiv Detail & Related papers (2023-03-29T07:02:20Z) - High-Resolution Image Synthesis with Latent Diffusion Models [14.786952412297808]
Training diffusion models on autoencoders allows for the first time to reach a near-optimal point between complexity reduction and detail preservation.
Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks.
arXiv Detail & Related papers (2021-12-20T18:55:25Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.