Virtual-mask Informed Prior for Sparse-view Dual-Energy CT Reconstruction
- URL: http://arxiv.org/abs/2504.07753v1
- Date: Thu, 10 Apr 2025 13:54:26 GMT
- Title: Virtual-mask Informed Prior for Sparse-view Dual-Energy CT Reconstruction
- Authors: Zini Chen, Yao Xiao, Junyan Zhang, Shaoyu Wang, Liu Shi, Qiegen Liu,
- Abstract summary: We propose a dual-domain virtual-mask in-formed diffusion model for sparse-view reconstruction by leveraging the high inter-channel correlation in perturbations.<n> Experimental results indicated that the present method exhibits excellent performance across multiple datasets.
- Score: 9.118267161536087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse-view sampling in dual-energy computed tomography (DECT) significantly reduces radiation dose and increases imaging speed, yet is highly prone to artifacts. Although diffusion models have demonstrated potential in effectively handling incomplete data, most existing methods in this field focus on the image do-main and lack global constraints, which consequently leads to insufficient reconstruction quality. In this study, we propose a dual-domain virtual-mask in-formed diffusion model for sparse-view reconstruction by leveraging the high inter-channel correlation in DECT. Specifically, the study designs a virtual mask and applies it to the high-energy and low-energy data to perform perturbation operations, thus constructing high-dimensional tensors that serve as the prior information of the diffusion model. In addition, a dual-domain collaboration strategy is adopted to integrate the information of the randomly selected high-frequency components in the wavelet domain with the information in the projection domain, for the purpose of optimizing the global struc-tures and local details. Experimental results indicated that the present method exhibits excellent performance across multiple datasets.
Related papers
- Direct Dual-Energy CT Material Decomposition using Model-based Denoising Diffusion Model [105.95160543743984]
We propose a deep learning procedure called Dual-Energy Decomposition Model-based Diffusion (DEcomp-MoD) for quantitative material decomposition.<n>We show that DEcomp-MoD outperform state-of-the-art unsupervised score-based model and supervised deep learning networks.
arXiv Detail & Related papers (2025-07-24T01:00:06Z) - Knowledge-guided Complex Diffusion Model for PolSAR Image Classification in Contourlet Domain [58.46450049579116]
We propose a knowledge-guided complex diffusion model for PolSAR image classification in the Contourlet domain.<n> Specifically, the Contourlet transform is first applied to decompose the data into low- and high-frequency subbands.<n>A knowledge-guided complex diffusion network is then designed to model the statistical properties of the low-frequency components.
arXiv Detail & Related papers (2025-07-08T04:50:28Z) - Frequency Domain-Based Diffusion Model for Unpaired Image Dehazing [92.61216319417208]
We propose a novel frequency domain-based diffusion model, named ours, for fully exploiting the beneficial knowledge in unpaired clear data.<n>Inspired by the strong generative ability shown by Diffusion Models (DMs), we tackle the dehazing task from the perspective of frequency domain reconstruction.
arXiv Detail & Related papers (2025-07-02T01:22:46Z) - FD-DiT: Frequency Domain-Directed Diffusion Transformer for Low-Dose CT Reconstruction [3.980622332603746]
Low-dose computed tomography (LDCT) reduces radiation exposure but suffers from image artifacts and loss of detail due to quantum and electronic noise.<n>FD-DiT centers on a diffusion strategy that progressively introduces noise until the distribution statistically aligns with that of LDCT data, followed by denoising processing.<n>A hybrid denoising network is then utilized to optimize the overall data reconstruction process.<n> Experimental results demonstrate that at identical dose levels, LDCT images reconstructed by FD-DiT exhibit superior noise and artifact suppression compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-06-30T02:16:38Z) - Deep Diffusion Models and Unsupervised Hyperspectral Unmixing for Realistic Abundance Map Synthesis [0.2812395851874055]
Our framework integrates blind linear hyperspectral unmixing with state-of-the-art diffusion models to enhance the realism and diversity of synthetic abundance maps.<n>We validate our approach using real hyperspectral imagery from the PRISMA space mission for Earth observation.
arXiv Detail & Related papers (2025-06-16T13:42:51Z) - Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models [48.87160158792048]
We introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way.
Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods.
arXiv Detail & Related papers (2024-05-26T10:58:22Z) - MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction [5.5805994093893885]
We propose an ultra-sparse view CT reconstruction method utilizing multi-scale dif-fusion models (MSDiff)
The proposed model ingeniously integrates information from both comprehensive sampling and selectively sparse sampling tech-niques.
By leveraging the inherent correlations within the projec-tion data, we have designed an equidistant mask, enabling the model to focus its attention more effectively.
arXiv Detail & Related papers (2024-05-09T14:52:32Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - MDFL: Multi-domain Diffusion-driven Feature Learning [19.298491870280213]
We present a multi-domain diffusion-driven feature learning network (MDFL)
MDFL redefines the effective information domain that the model really focuses on.
We demonstrate that MDFL significantly improves the feature extraction performance of high-dimensional data.
arXiv Detail & Related papers (2023-11-16T02:55:21Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.