vHeat: Building Vision Models upon Heat Conduction
- URL: http://arxiv.org/abs/2405.16555v1
- Date: Sun, 26 May 2024 12:58:04 GMT
- Title: vHeat: Building Vision Models upon Heat Conduction
- Authors: Zhaozhi Wang, Yue Liu, Yunfan Liu, Hongtian Yu, Yaowei Wang, Qixiang Ye, Yunjie Tian,
- Abstract summary: vHeat is a novel vision backbone model that simultaneously achieves both high computational efficiency and global receptive field.
The essential idea is to conceptualize image patches as heat sources and model the calculation of their correlations as the diffusion of thermal energy.
- Score: 63.00030330898876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental problem in learning robust and expressive visual representations lies in efficiently estimating the spatial relationships of visual semantics throughout the entire image. In this study, we propose vHeat, a novel vision backbone model that simultaneously achieves both high computational efficiency and global receptive field. The essential idea, inspired by the physical principle of heat conduction, is to conceptualize image patches as heat sources and model the calculation of their correlations as the diffusion of thermal energy. This mechanism is incorporated into deep models through the newly proposed module, the Heat Conduction Operator (HCO), which is physically plausible and can be efficiently implemented using DCT and IDCT operations with a complexity of $\mathcal{O}(N^{1.5})$. Extensive experiments demonstrate that vHeat surpasses Vision Transformers (ViTs) across various vision tasks, while also providing higher inference speeds, reduced FLOPs, and lower GPU memory usage for high-resolution images. The code will be released at https://github.com/MzeroMiko/vHeat.
Related papers
- Numerical Pruning for Efficient Autoregressive Models [87.56342118369123]
This paper focuses on compressing decoder-only transformer-based autoregressive models through structural weight pruning.
Specifically, we propose a training-free pruning method that calculates a numerical score with Newton's method for the Attention and modules, respectively.
To verify the effectiveness of our method, we provide both theoretical support and extensive experiments.
arXiv Detail & Related papers (2024-12-17T01:09:23Z) - Distillation of Diffusion Features for Semantic Correspondence [23.54555663670558]
We propose a novel knowledge distillation technique to overcome the problem of reduced efficiency.
We show how to use two large vision foundation models and distill the capabilities of these complementary models into one smaller model that maintains high accuracy at reduced computational cost.
Our empirical results demonstrate that our distilled model with 3D data augmentation achieves performance superior to current state-of-the-art methods while significantly reducing computational load and enhancing practicality for real-world applications, such as semantic video correspondence.
arXiv Detail & Related papers (2024-12-04T17:55:33Z) - RS-vHeat: Heat Conduction Guided Efficient Remote Sensing Foundation Model [41.70039494644282]
We introduce RS-vHeat, an efficient multi-modal remote sensing foundation model.
Specifically, RS-vHeat applies the Heat Conduction Operator (HCO) with a complexity of $O(N1.5)$ and a global receptive field.
Compared to attention-based remote sensing foundation models, we reduces memory consumption by 84%, decreases FLOPs by 24% and improves throughput by 2.7 times.
arXiv Detail & Related papers (2024-11-27T01:43:38Z) - HcNet: Image Modeling with Heat Conduction Equation [6.582336726258388]
This paper aims to integrate the overall architectural design of the model into the heat conduction theory framework.
Our Heat Conduction Network (HcNet) still shows competitive performance.
arXiv Detail & Related papers (2024-08-12T02:48:00Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory [11.3128832831327]
Increasing the size of a Transformer does not always lead to enhanced performance.
We present a theoretical framework that sheds light on the memorization during pre-training of transformer-based language models.
arXiv Detail & Related papers (2024-05-14T15:48:36Z) - Deep convolutional surrogates and degrees of freedom in thermal design [0.0]
Convolutional Neural Networks (CNNs) are used to predict results of Computational Fluid Dynamics (CFD) directly from topologies saved as images.
We present surrogate models for heat transfer and pressure drop prediction of complex fin geometries generated using composite Bezier curves.
arXiv Detail & Related papers (2022-08-16T00:45:39Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - Efficient Vision Transformers via Fine-Grained Manifold Distillation [96.50513363752836]
Vision transformer architectures have shown extraordinary performance on many computer vision tasks.
Although the network performance is boosted, transformers are often required more computational resources.
We propose to excavate useful information from the teacher transformer through the relationship between images and the divided patches.
arXiv Detail & Related papers (2021-07-03T08:28:34Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.