CapS-Adapter: Caption-based MultiModal Adapter in Zero-Shot Classification
- URL: http://arxiv.org/abs/2405.16591v2
- Date: Thu, 07 Nov 2024 09:33:40 GMT
- Title: CapS-Adapter: Caption-based MultiModal Adapter in Zero-Shot Classification
- Authors: Qijie Wang, Guandu Liu, Bin Wang,
- Abstract summary: CapS-Adapter is an innovative method that harnesses both image and caption features to exceed existing state-of-the-art techniques in training-free scenarios.
Our method achieves outstanding zero-shot classification results across 19 benchmark datasets, improving accuracy by 2.19% over the previous leading method.
- Score: 3.594351309950969
- License:
- Abstract: Recent advances in vision-language foundational models, such as CLIP, have demonstrated significant strides in zero-shot classification. However, the extensive parameterization of models like CLIP necessitates a resource-intensive fine-tuning process. In response, TIP-Adapter and SuS-X have introduced training-free methods aimed at bolstering the efficacy of downstream tasks. While these approaches incorporate support sets to maintain data distribution consistency between knowledge cache and test sets, they often fall short in terms of generalization on the test set, particularly when faced with test data exhibiting substantial distributional variations. In this work, we present CapS-Adapter, an innovative method that employs a caption-based support set, effectively harnessing both image and caption features to exceed existing state-of-the-art techniques in training-free scenarios. CapS-Adapter adeptly constructs support sets that closely mirror target distributions, utilizing instance-level distribution features extracted from multimodal large models. By leveraging CLIP's single and cross-modal strengths, CapS-Adapter enhances predictive accuracy through the use of multimodal support sets. Our method achieves outstanding zero-shot classification results across 19 benchmark datasets, improving accuracy by 2.19\% over the previous leading method. Our contributions are substantiated through extensive validation on multiple benchmark datasets, demonstrating superior performance and robust generalization capabilities. Our code is made publicly available at https://github.com/WLuLi/CapS-Adapter.
Related papers
- CLIP Adaptation by Intra-modal Overlap Reduction [1.2277343096128712]
We analyse the intra-modal overlap in image space in terms of embedding representation.
We train a lightweight adapter on a generic set of samples from the Google Open Images dataset.
arXiv Detail & Related papers (2024-09-17T16:40:58Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
Few-shot segmentation aims to train a segmentation model that can fast adapt to a novel task for which only a few annotated images are provided.
We introduce an instance-aware data augmentation (IDA) strategy that augments the support images based on the relative sizes of the target objects.
The proposed IDA effectively increases the support set's diversity and promotes the distribution consistency between support and query images.
arXiv Detail & Related papers (2024-01-18T10:29:10Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Not All Features Matter: Enhancing Few-shot CLIP with Adaptive Prior
Refinement [24.108008515395458]
We propose APE, an Adaptive Prior rEfinement method for CLIP's pre-trained knowledge, which achieves superior accuracy with high computational efficiency.
For the average accuracy over 11 benchmarks, both APE and APE-T attain state-of-the-art and respectively outperform the second-best by +1.59% and +1.99% under 16 shots with x30 less learnable parameters.
arXiv Detail & Related papers (2023-04-03T17:58:54Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - SVL-Adapter: Self-Supervised Adapter for Vision-Language Pretrained
Models [9.017387427570538]
Vision-language models such as CLIP are pretrained on large volumes of internet sourced image and text pairs.
Due to their size, fine-tuning these models on new datasets can be prohibitively expensive, both in terms of the supervision and compute required.
We present a new approach called SVL-Adapter that combines the complementary strengths of both vision-language pretraining and self-supervised representation learning.
arXiv Detail & Related papers (2022-10-07T19:35:08Z) - Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification [58.06983806317233]
Contrastive Vision-Language Pre-training, known as CLIP, has provided a new paradigm for learning visual representations using large-scale image-text pairs.
To enhance CLIP's adaption capability, existing methods proposed to fine-tune additional learnable modules.
We propose a training-free adaption method for CLIP to conduct few-shot classification, termed as Tip-Adapter.
arXiv Detail & Related papers (2022-07-19T19:12:11Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
arXiv Detail & Related papers (2022-03-25T06:14:51Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
We propose a novel contrastive prototype learning with augmented embeddings (CPLAE) model.
With a class prototype as an anchor, CPL aims to pull the query samples of the same class closer and those of different classes further away.
Extensive experiments on several benchmarks demonstrate that our proposed CPLAE achieves new state-of-the-art.
arXiv Detail & Related papers (2021-01-23T13:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.