Predicting Likely-Vulnerable Code Changes: Machine Learning-based Vulnerability Protections for Android Open Source Project
- URL: http://arxiv.org/abs/2405.16655v1
- Date: Sun, 26 May 2024 18:17:46 GMT
- Title: Predicting Likely-Vulnerable Code Changes: Machine Learning-based Vulnerability Protections for Android Open Source Project
- Authors: Keun Soo Yim,
- Abstract summary: This paper presents a framework that selectively triggers security reviews for incoming source code changes.
The framework can automatically request additional security reviews at pre-submit time before the code changes are submitted to a source code repository.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a framework that selectively triggers security reviews for incoming source code changes. Functioning as a review bot within a code review service, the framework can automatically request additional security reviews at pre-submit time before the code changes are submitted to a source code repository. Because performing such secure code reviews add cost, the framework employs a classifier trained to identify code changes with a high likelihood of vulnerabilities. The online classifier leverages various types of input features to analyze the review patterns, track the software engineering process, and mine specific text patterns within given code changes. The classifier and its features are meticulously chosen and optimized using data from the submitted code changes and reported vulnerabilities in Android Open Source Project (AOSP). The evaluation results demonstrate that our Vulnerability Prevention (VP) framework identifies approximately 80% of the vulnerability-inducing code changes in the dataset with a precision ratio of around 98% and a false positive rate of around 1.7%. We discuss the implications of deploying the VP framework in multi-project settings and future directions for Android security research. This paper explores and validates our approach to code change-granularity vulnerability prediction, offering a preventive technique for software security by preemptively detecting vulnerable code changes before submission.
Related papers
- RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCode is a benchmark for risky code execution and generation.
RedCode-Exec provides challenging prompts that could lead to risky code execution.
RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions.
arXiv Detail & Related papers (2024-11-12T13:30:06Z) - Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
We analyzed 2,401 code review comments from Java open-source projects on GitHub.
83.9% of suggestions for improvement were accepted and integrated, with fewer than 1% later reverted.
arXiv Detail & Related papers (2024-10-29T12:21:23Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
Large language models (LLMs) have shown great potential for automatic code generation.
Recent studies highlight that many LLM-generated code contains serious security vulnerabilities.
We introduce HexaCoder, a novel approach to enhance the ability of LLMs to generate secure codes.
arXiv Detail & Related papers (2024-09-10T12:01:43Z) - LLM-Enhanced Static Analysis for Precise Identification of Vulnerable OSS Versions [12.706661324384319]
Open-source software (OSS) has experienced a surge in popularity, attributed to its collaborative development model and cost-effective nature.
The adoption of specific software versions in development projects may introduce security risks when these versions bring along vulnerabilities.
Current methods of identifying vulnerable versions typically analyze and trace the code involved in vulnerability patches using static analysis with pre-defined rules.
This paper presents Vercation, an approach designed to identify vulnerable versions of OSS written in C/C++.
arXiv Detail & Related papers (2024-08-14T06:43:06Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
Large language models (LLMs) have brought significant advancements to code generation and code repair.
However, their training using unsanitized data from open-source repositories, like GitHub, raises the risk of inadvertently propagating security vulnerabilities.
We aim to present a comprehensive study aimed at precisely evaluating and enhancing the security aspects of code LLMs.
arXiv Detail & Related papers (2024-07-02T16:13:21Z) - A Novel Approach to Identify Security Controls in Source Code [4.598579706242066]
This paper enumerates a comprehensive list of commonly used security controls and creates a dataset for each one of them.
It uses the state-of-the-art NLP technique Bidirectional Representations from Transformers (BERT) and the Tactic Detector from our prior work to show that security controls could be identified with high confidence.
arXiv Detail & Related papers (2023-07-10T21:14:39Z) - Transformer-based Vulnerability Detection in Code at EditTime:
Zero-shot, Few-shot, or Fine-tuning? [5.603751223376071]
We present a practical system that leverages deep learning on a large-scale data set of vulnerable code patterns.
We show that in comparison with state of the art vulnerability detection models our approach improves the state of the art by 10%.
arXiv Detail & Related papers (2023-05-23T01:21:55Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - Pre-trained Encoders in Self-Supervised Learning Improve Secure and
Privacy-preserving Supervised Learning [63.45532264721498]
Self-supervised learning is an emerging technique to pre-train encoders using unlabeled data.
We perform first systematic, principled measurement study to understand whether and when a pretrained encoder can address the limitations of secure or privacy-preserving supervised learning algorithms.
arXiv Detail & Related papers (2022-12-06T21:35:35Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
We propose a deep learning model that learns to detect some of the common categories of security vulnerabilities in source code efficiently.
The model builds an accurate understanding of code semantics with a lot less learnable parameters.
The proposed AI achieves 98.40% F1-score on specific CWEs from the benchmarked NIST SARD dataset.
arXiv Detail & Related papers (2021-04-19T11:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.