Provably Efficient Off-Policy Adversarial Imitation Learning with Convergence Guarantees
- URL: http://arxiv.org/abs/2405.16668v1
- Date: Sun, 26 May 2024 19:17:32 GMT
- Title: Provably Efficient Off-Policy Adversarial Imitation Learning with Convergence Guarantees
- Authors: Yilei Chen, Vittorio Giammarino, James Queeney, Ioannis Ch. Paschalidis,
- Abstract summary: We study the convergence properties and sample complexity of off-policy AIL algorithms.
We show that, even in the absence of importance sampling correction, reusing samples generated by the $o(sqrtK)$ most recent policies, does not undermine the convergence guarantees.
- Score: 12.427664781003463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial Imitation Learning (AIL) faces challenges with sample inefficiency because of its reliance on sufficient on-policy data to evaluate the performance of the current policy during reward function updates. In this work, we study the convergence properties and sample complexity of off-policy AIL algorithms. We show that, even in the absence of importance sampling correction, reusing samples generated by the $o(\sqrt{K})$ most recent policies, where $K$ is the number of iterations of policy updates and reward updates, does not undermine the convergence guarantees of this class of algorithms. Furthermore, our results indicate that the distribution shift error induced by off-policy updates is dominated by the benefits of having more data available. This result provides theoretical support for the sample efficiency of off-policy AIL algorithms. To the best of our knowledge, this is the first work that provides theoretical guarantees for off-policy AIL algorithms.
Related papers
- On-Policy Policy Gradient Reinforcement Learning Without On-Policy Sampling [3.5253513747455303]
We introduce an adaptive, off-policy sampling method to improve the data efficiency of on-policy policy gradient algorithms.
Our method, Proximal Robust On-Policy Sampling (PROPS), reduces sampling error by collecting data with a behavior policy.
arXiv Detail & Related papers (2023-11-14T16:37:28Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
We study offline reinforcement learning (RL) which seeks to learn a good policy based on a fixed, pre-collected dataset.
We propose a bi-level structured policy optimization algorithm that models a hierarchical interaction between the policy (upper-level) and the value function (lower-level)
We evaluate our model using a blend of synthetic, benchmark, and real-world datasets for offline RL, showing that it performs competitively with state-of-the-art methods.
arXiv Detail & Related papers (2023-10-10T02:45:50Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - Distillation Policy Optimization [5.439020425819001]
We introduce an actor-critic learning framework that harmonizes two data sources for both evaluation and control.
This framework incorporates variance reduction mechanisms, including a unified advantage estimator (UAE) and a residual baseline.
Our results showcase substantial enhancements in sample efficiency for on-policy algorithms, effectively bridging the gap to the off-policy approaches.
arXiv Detail & Related papers (2023-02-01T15:59:57Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
We train a separate exploration policy to maximize an approximate upper confidence bound of the critics in an off-policy actor-critic framework.
To mitigate the off-policy-ness, we adapt the recently introduced DICE framework to learn a distribution correction ratio for off-policy actor-critic training.
arXiv Detail & Related papers (2021-10-22T22:07:51Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z) - Provably Good Batch Reinforcement Learning Without Great Exploration [51.51462608429621]
Batch reinforcement learning (RL) is important to apply RL algorithms to many high stakes tasks.
Recent algorithms have shown promise but can still be overly optimistic in their expected outcomes.
We show that a small modification to Bellman optimality and evaluation back-up to take a more conservative update can have much stronger guarantees.
arXiv Detail & Related papers (2020-07-16T09:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.