Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
- URL: http://arxiv.org/abs/2506.20520v1
- Date: Wed, 25 Jun 2025 15:07:16 GMT
- Title: Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
- Authors: Charles Arnal, Gaƫtan Narozniak, Vivien Cabannes, Yunhao Tang, Julia Kempe, Remi Munos,
- Abstract summary: We study the intermediate range of algorithms between off-policy RL and supervised fine-tuning.<n>We first provide a theoretical analysis of this off-policy REINFORCE algorithm.<n>Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones.
- Score: 17.695285420477035
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning (RL) is increasingly used to align large language models (LLMs). Off-policy methods offer greater implementation simplicity and data efficiency than on-policy techniques, but often result in suboptimal performance. In this work, we study the intermediate range of algorithms between off-policy RL and supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm, where the advantage is defined as $A=r-V$, with $r$ a reward and $V$ some tunable baseline. Intuitively, lowering $V$ emphasizes high-reward samples, while raising it penalizes low-reward ones more heavily. We first provide a theoretical analysis of this off-policy REINFORCE algorithm, showing that when the baseline $V$ lower-bounds the expected reward, the algorithm enjoys a policy improvement guarantee. Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones. We validate our findings experimentally in a controlled stochastic bandit setting and through fine-tuning state-of-the-art LLMs on reasoning tasks.
Related papers
- Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning [55.33984461046492]
Policy-based methods currently dominate reinforcement learning pipelines for large language model (LLM) reasoning.<n>We introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm that naturally adapts this idea to LLMs.<n>We prove convergence to the near-optimal KL-regularized policy from arbitrary off-policy via an improved change-of-trajectory-measure analysis.
arXiv Detail & Related papers (2025-05-21T09:41:53Z) - Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion [43.77763433288893]
We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data.<n>We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient.<n>We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task.
arXiv Detail & Related papers (2024-06-27T14:03:49Z) - Provably Efficient Off-Policy Adversarial Imitation Learning with Convergence Guarantees [12.427664781003463]
We study the convergence properties and sample complexity of off-policy AIL algorithms.
We show that, even in the absence of importance sampling correction, reusing samples generated by the $o(sqrtK)$ most recent policies, does not undermine the convergence guarantees.
arXiv Detail & Related papers (2024-05-26T19:17:32Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
We study reinforcement learning with linear function approximation and adversarially changing cost functions.
We present a computationally efficient policy optimization algorithm for the challenging general setting of unknown dynamics and bandit feedback.
arXiv Detail & Related papers (2023-01-30T17:26:39Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
We propose a novel offline reinforcement learning algorithm called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
PARTED decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value based on the learned proxy reward.
To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward.
arXiv Detail & Related papers (2022-06-13T19:11:22Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Optimistic Policy Optimization with Bandit Feedback [70.75568142146493]
We propose an optimistic trust region policy optimization (TRPO) algorithm for which we establish $tilde O(sqrtS2 A H4 K)$ regret for previous rewards.
To the best of our knowledge, the two results are the first sub-linear regret bounds obtained for policy optimization algorithms with unknown transitions and bandit feedback.
arXiv Detail & Related papers (2020-02-19T15:41:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.