Transfer Learning Under High-Dimensional Graph Convolutional Regression Model for Node Classification
- URL: http://arxiv.org/abs/2405.16672v1
- Date: Sun, 26 May 2024 19:30:14 GMT
- Title: Transfer Learning Under High-Dimensional Graph Convolutional Regression Model for Node Classification
- Authors: Jiachen Chen, Danyang Huang, Liyuan Wang, Kathryn L. Lunetta, Debarghya Mukherjee, Huimin Cheng,
- Abstract summary: We propose a Graph Convolutional Multinomial Logistic Regression (GCR) model and a transfer learning method based on the GCR model, called Trans-GCR.
We provide theoretical guarantees of the estimate obtained under GCR model in high-dimensional settings.
- Score: 20.18595334666282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Node classification is a fundamental task, but obtaining node classification labels can be challenging and expensive in many real-world scenarios. Transfer learning has emerged as a promising solution to address this challenge by leveraging knowledge from source domains to enhance learning in a target domain. Existing transfer learning methods for node classification primarily focus on integrating Graph Convolutional Networks (GCNs) with various transfer learning techniques. While these approaches have shown promising results, they often suffer from a lack of theoretical guarantees, restrictive conditions, and high sensitivity to hyperparameter choices. To overcome these limitations, we propose a Graph Convolutional Multinomial Logistic Regression (GCR) model and a transfer learning method based on the GCR model, called Trans-GCR. We provide theoretical guarantees of the estimate obtained under GCR model in high-dimensional settings. Moreover, Trans-GCR demonstrates superior empirical performance, has a low computational cost, and requires fewer hyperparameters than existing methods.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - xAI-Drop: Don't Use What You Cannot Explain [23.33477769275026]
Graph Neural Networks (GNNs) have emerged as the predominant paradigm for learning from graph-structured data.
GNNs face challenges such as lack of generalization and poor interpretability.
We introduce xAI-Drop, a novel topological-level dropping regularizer.
arXiv Detail & Related papers (2024-07-29T14:53:45Z) - Enhancing Graph Neural Networks with Limited Labeled Data by Actively Distilling Knowledge from Large Language Models [30.867447814409623]
Graph neural networks (GNNs) have great ability in node classification, a fundamental task on graphs.
We propose a novel approach that integrates Large Language Models (LLMs) and GNNs.
Our model in improving node classification accuracy with considerably limited labeled data, surpassing state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2024-07-19T02:34:10Z) - HERTA: A High-Efficiency and Rigorous Training Algorithm for Unfolded Graph Neural Networks [14.139047596566485]
HERTA is a high-efficiency and rigorous training algorithm for Unfolded GNNs.
HERTA converges to the optimum of the original model, thus preserving the interpretability of Unfolded GNNs.
As a byproduct of HERTA, we propose a new spectral sparsification method applicable to normalized and regularized graph Laplacians.
arXiv Detail & Related papers (2024-03-26T23:03:06Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
We introduce an enhanced evaluation framework designed to more accurately gauge the effectiveness, consistency, and overall capability of Graph Contrastive Learning (GCL) methods.
arXiv Detail & Related papers (2024-02-24T01:47:56Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - On-Device Domain Generalization [93.79736882489982]
Domain generalization is critical to on-device machine learning applications.
We find that knowledge distillation is a strong candidate for solving the problem.
We propose a simple idea called out-of-distribution knowledge distillation (OKD), which aims to teach the student how the teacher handles (synthetic) out-of-distribution data.
arXiv Detail & Related papers (2022-09-15T17:59:31Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - Tackling Oversmoothing of GNNs with Contrastive Learning [35.88575306925201]
Graph neural networks (GNNs) integrate the comprehensive relation of graph data and representation learning capability.
Oversmoothing makes the final representations of nodes indiscriminative, thus deteriorating the node classification and link prediction performance.
We propose the Topology-guided Graph Contrastive Layer, named TGCL, which is the first de-oversmoothing method maintaining all three mentioned metrics.
arXiv Detail & Related papers (2021-10-26T15:56:16Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.