Enhancing Graph Neural Networks with Limited Labeled Data by Actively Distilling Knowledge from Large Language Models
- URL: http://arxiv.org/abs/2407.13989v3
- Date: Wed, 4 Sep 2024 17:52:37 GMT
- Title: Enhancing Graph Neural Networks with Limited Labeled Data by Actively Distilling Knowledge from Large Language Models
- Authors: Quan Li, Tianxiang Zhao, Lingwei Chen, Junjie Xu, Suhang Wang,
- Abstract summary: Graph neural networks (GNNs) have great ability in node classification, a fundamental task on graphs.
We propose a novel approach that integrates Large Language Models (LLMs) and GNNs.
Our model in improving node classification accuracy with considerably limited labeled data, surpassing state-of-the-art baselines by significant margins.
- Score: 30.867447814409623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are pervasive in the real-world, such as social network analysis, bioinformatics, and knowledge graphs. Graph neural networks (GNNs) have great ability in node classification, a fundamental task on graphs. Unfortunately, conventional GNNs still face challenges in scenarios with few labeled nodes, despite the prevalence of few-shot node classification tasks in real-world applications. To address this challenge, various approaches have been proposed, including graph meta-learning, transfer learning, and methods based on Large Language Models (LLMs). However, traditional meta-learning and transfer learning methods often require prior knowledge from base classes or fail to exploit the potential advantages of unlabeled nodes. Meanwhile, LLM-based methods may overlook the zero-shot capabilities of LLMs and rely heavily on the quality of generated contexts. In this paper, we propose a novel approach that integrates LLMs and GNNs, leveraging the zero-shot inference and reasoning capabilities of LLMs and employing a Graph-LLM-based active learning paradigm to enhance GNNs' performance. Extensive experiments demonstrate the effectiveness of our model in improving node classification accuracy with considerably limited labeled data, surpassing state-of-the-art baselines by significant margins.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Exploring the Potential of Large Language Models for Heterophilic Graphs [38.79574338268997]
We propose a two-stage framework for modeling heterophilic graphs using large language models (LLMs)
In the first stage, we fine-tune the LLM to better identify homophilic and heterophilic edges based on the textual content of their nodes.
In the second stage, we adaptively manage message propagation in GNNs for different edge types based on node features, structures, and heterophilic or homophilic characteristics.
arXiv Detail & Related papers (2024-08-26T09:29:56Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - Similarity-based Neighbor Selection for Graph LLMs [43.176381523196426]
We introduce Similarity-based Neighbor Selection (SNS)
SNS improves the quality of selected neighbors, thereby improving graph representation and alleviating issues like over-squashing and heterophily.
As an inductive and training-free approach, SNS demonstrates superior generalization and scalability over traditional GNN methods.
arXiv Detail & Related papers (2024-02-06T05:29:05Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
We put forth an efficient and effective framework termed language model GNN (LM-GNN) to jointly train large-scale language models and graph neural networks.
The effectiveness in our framework is achieved by applying stage-wise fine-tuning of the BERT model first with heterogenous graph information and then with a GNN model.
We evaluate the LM-GNN framework in different datasets performance and showcase the effectiveness of the proposed approach.
arXiv Detail & Related papers (2022-06-22T00:23:37Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
We propose a novel network architecture equipped with a novel meta-learning algorithm to solve this problem.
In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy.
Our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets.
arXiv Detail & Related papers (2021-12-18T00:11:56Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
We propose a new graph meta-learning framework -- Graph Hallucination Networks (Meta-GHN)
Based on a new robustness-enhanced episodic training, Meta-GHN is meta-learned to hallucinate clean node representations from weakly-labeled data.
Extensive experiments demonstrate the superiority of Meta-GHN over existing graph meta-learning studies.
arXiv Detail & Related papers (2021-06-12T22:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.