論文の概要: How many samples are needed to train a deep neural network?
- arxiv url: http://arxiv.org/abs/2405.16696v1
- Date: Sun, 26 May 2024 21:07:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 19:48:31.480223
- Title: How many samples are needed to train a deep neural network?
- Title(参考訳): ディープニューラルネットワークのトレーニングには,いくつのサンプルが必要ですか?
- Authors: Pegah Golestaneh, Mahsa Taheri, Johannes Lederer,
- Abstract要約: 本稿では,ReLUフィードフォワードニューラルネットワークのトレーニングに必要なデータ量について検討する。
私たちの結果は、ニューラルネットワークが"多くの"トレーニングサンプルを必要とするという一般的な信念を裏付けています。
- 参考スコア(独自算出の注目度): 6.042269506496206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have become standard tools in many areas, yet many important statistical questions remain open. This paper studies the question of how much data are needed to train a ReLU feed-forward neural network. Our theoretical and empirical results suggest that the generalization error of ReLU feed-forward neural networks scales at the rate $1/\sqrt{n}$ in the sample size $n$ rather than the usual "parametric rate" $1/n$. Thus, broadly speaking, our results underpin the common belief that neural networks need "many" training samples.
- Abstract(参考訳): ニューラルネットワークは多くの分野で標準的なツールとなっているが、多くの重要な統計的な疑問が残っている。
本稿では,ReLUフィードフォワードニューラルネットワークのトレーニングに必要なデータ量について検討する。
我々の理論的および実証的な結果は、ReLUフィードフォワードニューラルネットワークの一般化誤差が、通常の「パラメトリックレート」1/n$ではなく、サンプルサイズ$n$で1/\sqrt{n}$でスケールすることを示唆している。
このように、我々の結果は、ニューラルネットワークには「多くの」トレーニングサンプルが必要であるという一般的な信念の根底にある。
関連論文リスト
- Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - Sampling weights of deep neural networks [1.2370077627846041]
完全に接続されたニューラルネットワークの重みとバイアスに対して,効率的なサンプリングアルゴリズムと組み合わせた確率分布を導入する。
教師付き学習環境では、内部ネットワークパラメータの反復最適化や勾配計算は不要である。
サンプルネットワークが普遍近似器であることを証明する。
論文 参考訳(メタデータ) (2023-06-29T10:13:36Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
ラベルフリップ雑音を持つ2層ReLU畳み込みニューラルネットワークを学習するためのアルゴリズム依存型リスクバウンダリを確立する。
緩やかな条件下では、勾配降下によってトレーニングされたニューラルネットワークは、ほぼゼロに近いトレーニング損失とベイズ最適試験リスクを達成できることを示す。
論文 参考訳(メタデータ) (2023-03-07T18:59:38Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
目的関数の幾何学的構造を解析することにより、刈り取られたニューラルネットワークを訓練する性能を解析する。
本稿では,ニューラルネットワークモデルがプルーニングされるにつれて,一般化が保証された望ましいモデル近傍の凸領域が大きくなることを示す。
論文 参考訳(メタデータ) (2021-10-12T01:11:07Z) - The Rate of Convergence of Variation-Constrained Deep Neural Networks [35.393855471751756]
変動制約のあるニューラルネットワークのクラスは、任意に小さな定数$delta$に対して、ほぼパラメトリックレート$n-1/2+delta$を達成することができることを示す。
その結果、滑らかな関数の近似に必要な神経機能空間は、しばしば知覚されるものほど大きくない可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-22T21:28:00Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
様々な最先端の畳み込みニューラルネットワークの最後に隠された層表現について検討する。
最後に隠された表現が十分に広ければ、そのニューロンは同一の情報を持つグループに分裂し、統計的に独立したノイズによってのみ異なる傾向にある。
論文 参考訳(メタデータ) (2021-06-07T10:18:54Z) - Testing for Normality with Neural Networks [0.0]
フィードフォワードニューラルネットワークを構築し,その小さなサンプルを検査することで,正常な分布を正確に検出する。
ネットワークの精度は250-1000要素のより大きなサンプルのセットで96%以上であった。
論文 参考訳(メタデータ) (2020-09-29T07:35:40Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
この研究で、中間的神経表現がニューラルネットワークにさらなる柔軟性をもたらすことを実証する。
提案手法は, 生の入力と比較して, サンプルの複雑度を向上できることを示す。
この結果から, 深度が深層学習においてなぜ重要かという新たな視点が得られた。
論文 参考訳(メタデータ) (2020-06-24T02:44:54Z) - Neural Networks and Value at Risk [59.85784504799224]
リスクしきい値推定における資産価値のモンテカルロシミュレーションを行う。
株式市場と長期債を試験資産として利用し、ニューラルネットワークについて検討する。
はるかに少ないデータでフィードされたネットワークは、大幅にパフォーマンスが悪くなっています。
論文 参考訳(メタデータ) (2020-05-04T17:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。