Pretraining with Random Noise for Fast and Robust Learning without Weight Transport
- URL: http://arxiv.org/abs/2405.16731v1
- Date: Mon, 27 May 2024 00:12:51 GMT
- Title: Pretraining with Random Noise for Fast and Robust Learning without Weight Transport
- Authors: Jeonghwan Cheon, Sang Wan Lee, Se-Bum Paik,
- Abstract summary: We show that pretraining neural networks with random noise increases the learning efficiency as well as generalization abilities without weight transport.
Sequential training with both random noise and data brings weights closer to synaptic feedback than training solely with data.
This pre-regularization allows the network to learn simple solutions of a low rank, reducing the generalization loss during subsequent training.
- Score: 6.916179672407521
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The brain prepares for learning even before interacting with the environment, by refining and optimizing its structures through spontaneous neural activity that resembles random noise. However, the mechanism of such a process has yet to be thoroughly understood, and it is unclear whether this process can benefit the algorithm of machine learning. Here, we study this issue using a neural network with a feedback alignment algorithm, demonstrating that pretraining neural networks with random noise increases the learning efficiency as well as generalization abilities without weight transport. First, we found that random noise training modifies forward weights to match backward synaptic feedback, which is necessary for teaching errors by feedback alignment. As a result, a network with pre-aligned weights learns notably faster than a network without random noise training, even reaching a convergence speed comparable to that of a backpropagation algorithm. Sequential training with both random noise and data brings weights closer to synaptic feedback than training solely with data, enabling more precise credit assignment and faster learning. We also found that each readout probability approaches the chance level and that the effective dimensionality of weights decreases in a network pretrained with random noise. This pre-regularization allows the network to learn simple solutions of a low rank, reducing the generalization loss during subsequent training. This also enables the network robustly to generalize a novel, out-of-distribution dataset. Lastly, we confirmed that random noise pretraining reduces the amount of meta-loss, enhancing the network ability to adapt to various tasks. Overall, our results suggest that random noise training with feedback alignment offers a straightforward yet effective method of pretraining that facilitates quick and reliable learning without weight transport.
Related papers
- Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge.
Motivated by the characteristics of neural networks, we investigated how to design an Innately Forgetting-Free Network (IF2Net)
IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time.
arXiv Detail & Related papers (2023-06-18T05:26:49Z) - Bit-wise Training of Neural Network Weights [4.56877715768796]
We introduce an algorithm where the individual bits representing the weights of a neural network are learned.
This method allows training weights with integer values on arbitrary bit-depths and naturally uncovers sparse networks.
We show better results than the standard training technique with fully connected networks and similar performance as compared to standard training for convolutional and residual networks.
arXiv Detail & Related papers (2022-02-19T10:46:54Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Training Sparse Neural Networks using Compressed Sensing [13.84396596420605]
We develop and test a novel method based on compressed sensing which combines the pruning and training into a single step.
Specifically, we utilize an adaptively weighted $ell1$ penalty on the weights during training, which we combine with a generalization of the regularized dual averaging (RDA) algorithm in order to train sparse neural networks.
arXiv Detail & Related papers (2020-08-21T19:35:54Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM accelerators often suffer from intrinsic noise in the physical components.
We propose a noise-agnostic method to achieve robust neural network performance against any noise setting.
arXiv Detail & Related papers (2020-07-07T06:51:28Z) - Training highly effective connectivities within neural networks with
randomly initialized, fixed weights [4.56877715768796]
We introduce a novel way of training a network by flipping the signs of the weights.
We obtain good results even with weights constant magnitude or even when weights are drawn from highly asymmetric distributions.
arXiv Detail & Related papers (2020-06-30T09:41:18Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
We show a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network.
We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly gradient descent indeed this principle.
arXiv Detail & Related papers (2020-05-20T16:56:08Z) - Distance-Based Regularisation of Deep Networks for Fine-Tuning [116.71288796019809]
We develop an algorithm that constrains a hypothesis class to a small sphere centred on the initial pre-trained weights.
Empirical evaluation shows that our algorithm works well, corroborating our theoretical results.
arXiv Detail & Related papers (2020-02-19T16:00:47Z) - Side-Tuning: A Baseline for Network Adaptation via Additive Side
Networks [95.51368472949308]
Adaptation can be useful in cases when training data is scarce, or when one wishes to encode priors in the network.
In this paper, we propose a straightforward alternative: side-tuning.
arXiv Detail & Related papers (2019-12-31T18:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.