Reframing the Relationship in Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2405.16766v1
- Date: Mon, 27 May 2024 02:27:28 GMT
- Title: Reframing the Relationship in Out-of-Distribution Detection
- Authors: YuXiao Lee, Xiaofeng Cao,
- Abstract summary: We introduce a novel approach that integrates the agent paradigm into the Out-of-distribution (OOD) detection task.
Our proposed method, Concept Matching with Agent (CMA), employs neutral prompts as agents to augment the CLIP-based OOD detection process.
Our extensive experimental results showcase the superior performance of CMA over both zero-shot and training-required methods.
- Score: 4.182518087792777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable achievements of Large Language Models (LLMs) have captivated the attention of both academia and industry, transcending their initial role in dialogue generation. The utilization of LLMs as intermediary agents in various tasks has yielded promising results, sparking a wave of innovation in artificial intelligence. Building on these breakthroughs, we introduce a novel approach that integrates the agent paradigm into the Out-of-distribution (OOD) detection task, aiming to enhance its robustness and adaptability. Our proposed method, Concept Matching with Agent (CMA), employs neutral prompts as agents to augment the CLIP-based OOD detection process. These agents function as dynamic observers and communication hubs, interacting with both In-distribution (ID) labels and data inputs to form vector triangle relationships. This triangular framework offers a more nuanced approach than the traditional binary relationship, allowing for better separation and identification of ID and OOD inputs. Our extensive experimental results showcase the superior performance of CMA over both zero-shot and training-required methods in a diverse array of real-world scenarios.
Related papers
- Sparse Meets Dense: Unified Generative Recommendations with Cascaded Sparse-Dense Representations [22.48125906976824]
We introduce the Cascaded Organized Bi-Represented generAtive retrieval framework, which integrates sparse semantic IDs and dense vectors through a cascading process.
Our method alternates between generating these representations by first generating sparse IDs, which serve as conditions to aid in the generation of dense vectors.
During inference, COBRA employs a coarse-to-fine strategy, starting with sparse ID generation and refining them into dense vectors via the generative model.
arXiv Detail & Related papers (2025-03-04T10:00:05Z) - A Cooperative Multi-Agent Framework for Zero-Shot Named Entity Recognition [71.61103962200666]
Zero-shot named entity recognition (NER) aims to develop entity recognition systems from unannotated text corpora.
Recent work has adapted large language models (LLMs) for zero-shot NER by crafting specialized prompt templates.
We introduce the cooperative multi-agent system (CMAS), a novel framework for zero-shot NER.
arXiv Detail & Related papers (2025-02-25T23:30:43Z) - C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation [13.120930059424975]
C-3PO is a proxy-centric framework that facilitates communication between retrievers and large language models.
Our framework implements three specialized agents that collaboratively optimize the entire RAG pipeline.
arXiv Detail & Related papers (2025-02-10T07:04:32Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching [53.05954114863596]
We propose a brand-new Deep Boosting Learning (DBL) algorithm for image-text matching.
An anchor branch is first trained to provide insights into the data properties.
A target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples.
arXiv Detail & Related papers (2024-04-28T08:44:28Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.
We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.
CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
We tackle the multi-agent active hypothesis testing (AHT) problem by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning.
We present a comprehensive set of experimental results that effectively showcase the agents' ability to learn collaborative strategies and enhance performance.
arXiv Detail & Related papers (2023-09-14T01:18:04Z) - Spatio-Temporal Domain Awareness for Multi-Agent Collaborative
Perception [18.358998861454477]
Multi-agent collaborative perception as a potential application for vehicle-to-everything communication could significantly improve the performance perception of autonomous vehicles over single-agent perception.
We propose SCOPE, a novel collaborative perception framework that aggregates awareness characteristics across agents in an end-to-end manner.
arXiv Detail & Related papers (2023-07-26T03:00:31Z) - Contrastive Identity-Aware Learning for Multi-Agent Value Decomposition [31.877237996738252]
Value Decomposition (VD) aims to deduce the contributions of agents for decentralized policies in the presence of only global rewards.
One of the main challenges in VD is to promote diverse behaviors among agents, while existing methods directly encourage the diversity of learned agent networks.
We propose a novel Contrastive Identity-Aware learning (CIA) method, explicitly boosting the credit-level distinguishability of the VD network.
arXiv Detail & Related papers (2022-11-23T05:18:42Z) - Outcome-Guided Counterfactuals for Reinforcement Learning Agents from a
Jointly Trained Generative Latent Space [0.0]
We present a novel generative method for producing unseen and plausible counterfactual examples for reinforcement learning (RL) agents.
Our approach uses a variational autoencoder to train a latent space that jointly encodes information about the observations and outcome variables pertaining to an agent's behavior.
arXiv Detail & Related papers (2022-07-15T19:09:54Z) - Toward Policy Explanations for Multi-Agent Reinforcement Learning [18.33682005623418]
We present novel methods to generate two types of policy explanations for MARL.
Experimental results on three MARL domains demonstrate the scalability of our methods.
A user study shows that the generated explanations significantly improve user performance and increase subjective ratings on metrics such as user satisfaction.
arXiv Detail & Related papers (2022-04-26T20:07:08Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Agent-Centric Representations for Multi-Agent Reinforcement Learning [12.577354830985012]
We investigate whether object-centric representations are also beneficial in the fully cooperative multi-agent reinforcement learning setting.
Specifically, we study two ways of incorporating an agent-centric inductive bias into our RL algorithm.
We evaluate these approaches on the Google Research Football environment as well as DeepMind Lab 2D.
arXiv Detail & Related papers (2021-04-19T15:43:40Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.