TransAM: Transformer-Based Agent Modeling for Multi-Agent Systems via Local Trajectory Encoding
- URL: http://arxiv.org/abs/2508.02826v1
- Date: Mon, 04 Aug 2025 18:50:37 GMT
- Title: TransAM: Transformer-Based Agent Modeling for Multi-Agent Systems via Local Trajectory Encoding
- Authors: Conor Wallace, Umer Siddique, Yongcan Cao,
- Abstract summary: We propose textttTransAM, a novel transformer-based agent modeling approach to encode local trajectories into an embedding space.<n>We evaluate the performance of the proposed method in cooperative, competitive, and mixed multi-agent environments.
- Score: 2.08099858257632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agent modeling is a critical component in developing effective policies within multi-agent systems, as it enables agents to form beliefs about the behaviors, intentions, and competencies of others. Many existing approaches assume access to other agents' episodic trajectories, a condition often unrealistic in real-world applications. Consequently, a practical agent modeling approach must learn a robust representation of the policies of the other agents based only on the local trajectory of the controlled agent. In this paper, we propose \texttt{TransAM}, a novel transformer-based agent modeling approach to encode local trajectories into an embedding space that effectively captures the policies of other agents. We evaluate the performance of the proposed method in cooperative, competitive, and mixed multi-agent environments. Extensive experimental results demonstrate that our approach generates strong policy representations, improves agent modeling, and leads to higher episodic returns.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Contrastive learning-based agent modeling for deep reinforcement learning [29.16867602635975]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.<n>We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.<n>CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - Fact-based Agent modeling for Multi-Agent Reinforcement Learning [6.431977627644292]
Fact-based Agent modeling (FAM) method is proposed in which fact-based belief inference (FBI) network models other agents in partially observable environment only based on its local information.
We evaluate FAM on various Multiagent Particle Environment (MPE) and compare the results with several state-of-the-art MARL algorithms.
arXiv Detail & Related papers (2023-10-18T19:43:38Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
The optimal adaptive behaviour under uncertainty over the other agents' strategies can be computed using the Interactive Bayesian Reinforcement Learning framework.
We propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior.
We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.
arXiv Detail & Related papers (2021-01-11T13:25:13Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
We propose a reinforcement learning-based framework for learning latent representations of an agent's policy.
We show that our approach outperforms the alternatives and learns to influence the other agent.
arXiv Detail & Related papers (2020-11-12T19:04:26Z) - A Policy Gradient Algorithm for Learning to Learn in Multiagent
Reinforcement Learning [47.154539984501895]
We propose a novel meta-multiagent policy gradient theorem that accounts for the non-stationary policy dynamics inherent to multiagent learning settings.
This is achieved by modeling our gradient updates to consider both an agent's own non-stationary policy dynamics and the non-stationary policy dynamics of other agents in the environment.
arXiv Detail & Related papers (2020-10-31T22:50:21Z) - Agent Modelling under Partial Observability for Deep Reinforcement
Learning [12.903487594031276]
Existing methods for agent modelling assume knowledge of the local observations and chosen actions of the modelled agents during execution.
We learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent.
The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning.
arXiv Detail & Related papers (2020-06-16T18:43:42Z) - Variational Autoencoders for Opponent Modeling in Multi-Agent Systems [9.405879323049659]
Multi-agent systems exhibit complex behaviors that emanate from the interactions of multiple agents in a shared environment.
In this work, we are interested in controlling one agent in a multi-agent system and successfully learn to interact with the other agents that have fixed policies.
Modeling the behavior of other agents (opponents) is essential in understanding the interactions of the agents in the system.
arXiv Detail & Related papers (2020-01-29T13:38:59Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework.
We develop a Decentralized Adrial Imitation Learning algorithm with Correlated policies (CoDAIL)
Various experiments demonstrate that CoDAIL can better regenerate complex interactions close to the demonstrators.
arXiv Detail & Related papers (2020-01-04T17:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.