論文の概要: Performance evaluation of Reddit Comments using Machine Learning and Natural Language Processing methods in Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2405.16810v2
- Date: Tue, 28 May 2024 14:28:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 10:59:04.115095
- Title: Performance evaluation of Reddit Comments using Machine Learning and Natural Language Processing methods in Sentiment Analysis
- Title(参考訳): 知覚分析における機械学習と自然言語処理を用いたRedditコメントの性能評価
- Authors: Xiaoxia Zhang, Xiuyuan Qi, Zixin Teng,
- Abstract要約: 我々は、Reddit上で58,000のコメントを寄せ集め、感情分析手法を評価した。
我々の研究は、様々なモデルの配列を評価することによって、範囲を広げる。
以上の結果から,RoBERTaモデルはベースラインモデルよりも一貫して優れていることがわかった。
- 参考スコア(独自算出の注目度): 0.764671395172401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment analysis, an increasingly vital field in both academia and industry, plays a pivotal role in machine learning applications, particularly on social media platforms like Reddit. However, the efficacy of sentiment analysis models is hindered by the lack of expansive and fine-grained emotion datasets. To address this gap, our study leverages the GoEmotions dataset, comprising a diverse range of emotions, to evaluate sentiment analysis methods across a substantial corpus of 58,000 comments. Distinguished from prior studies by the Google team, which limited their analysis to only two models, our research expands the scope by evaluating a diverse array of models. We investigate the performance of traditional classifiers such as Naive Bayes and Support Vector Machines (SVM), as well as state-of-the-art transformer-based models including BERT, RoBERTa, and GPT. Furthermore, our evaluation criteria extend beyond accuracy to encompass nuanced assessments, including hierarchical classification based on varying levels of granularity in emotion categorization. Additionally, considerations such as computational efficiency are incorporated to provide a comprehensive evaluation framework. Our findings reveal that the RoBERTa model consistently outperforms the baseline models, demonstrating superior accuracy in fine-grained sentiment classification tasks. This underscores the substantial potential and significance of the RoBERTa model in advancing sentiment analysis capabilities.
- Abstract(参考訳): 学界と業界の両方でますます重要な分野であるセンチメント分析は、機械学習アプリケーション、特にRedditのようなソーシャルメディアプラットフォームにおいて重要な役割を担っている。
しかし、感情分析モデルの有効性は、広範できめ細かな感情データセットの欠如によって妨げられている。
このギャップに対処するために、さまざまな感情を含むGoEmotionsデータセットを活用し、58,000のコメントからなるかなりのコーパスにわたる感情分析手法を評価する。
Googleのチームによる以前の研究とは違い、分析は2つのモデルに限られており、我々の研究は多様なモデルの配列を評価することで範囲を広げている。
本研究では,NIVE Bayes and Support Vector Machines (SVM) などの従来の分類器と,BERT,RoBERTa,GPTなどの最先端トランスフォーマモデルの性能について検討する。
さらに,評価基準は,感情分類の粒度の異なる階層的分類を含む,ニュアンス評価を包含するほど正確ではない。
さらに、総合的な評価枠組みを提供するために、計算効率などの考察が組み込まれている。
以上の結果から,RoBERTaモデルがベースラインモデルより一貫して優れており,微粒な感情分類タスクにおいて精度が優れていることが判明した。
このことは、感情分析能力の進歩におけるRoBERTaモデルの有効性と重要性を浮き彫りにしている。
関連論文リスト
- GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Finding fake reviews in e-commerce platforms by using hybrid algorithms [0.0]
そこで我々は, 感情分析のための革新的なアンサンブルアプローチを提案し, 偽レビューの発見を行う。
私たちのアンサンブルアーキテクチャは、さまざまなモデルを戦略的に組み合わせて、固有の弱点を緩和しながら、その強みを活かします。
本研究は, 偽レビュー発見の最先端化において, アンサンブル技術の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-04-09T14:25:27Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるRussetポテトクローンの適合性を予測するため, 機械学習アルゴリズムの適用について検討する。
我々はオレゴン州で手作業で収集した試験のデータを活用している。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - F-Eval: Asssessing Fundamental Abilities with Refined Evaluation Methods [111.46455901113976]
F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
論文 参考訳(メタデータ) (2024-01-26T13:55:32Z) - Exploring the Power of Topic Modeling Techniques in Analyzing Customer
Reviews: A Comparative Analysis [0.0]
大量のテキストデータをオンラインで分析するために、機械学習と自然言語処理アルゴリズムがデプロイされている。
本研究では,顧客レビューに特化して用いられる5つのトピックモデリング手法について検討・比較する。
以上の結果から,BERTopicはより意味のあるトピックを抽出し,良好な結果を得ることができた。
論文 参考訳(メタデータ) (2023-08-19T08:18:04Z) - Evaluating the Generation Capabilities of Large Chinese Language Models [27.598864484231477]
本稿では,CG-Evalについて紹介する。
学術分野にまたがる大規模な中国語モデルの生成能力を評価する。
Gscoreは、参照標準に対するモデルのテキスト生成の品質測定を自動化する。
論文 参考訳(メタデータ) (2023-08-09T09:22:56Z) - Aspect-Based Sentiment Analysis using Local Context Focus Mechanism with
DeBERTa [23.00810941211685]
Aspect-Based Sentiment Analysis (ABSA)は、感情分析の分野におけるきめ細かいタスクである。
アスペクトベース感性分析問題を解決するための最近のDeBERTaモデル
論文 参考訳(メタデータ) (2022-07-06T03:50:31Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
我々は、静的DSMによって生成されたり、BERTによって生成された文脈化されたベクトルを平均化して得られるような、型分布ベクトルの包括的評価を行う。
その結果、予測ベースモデルの優越性は現実よりも明らかであり、ユビキタスではないことが明らかとなった。
我々は認知神経科学からRepresentational similarity Analysis(RSA)の方法論を借りて、分布モデルによって生成された意味空間を検査する。
論文 参考訳(メタデータ) (2021-05-20T15:18:06Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
我々はraddleベンチマーク、コーパスのコレクション、および様々なドメインのモデルのパフォーマンスを評価するためのツールを紹介します。
RADDLEは強力な一般化能力を持つモデルを好んで奨励するように設計されている。
先行学習と微調整に基づく最近の最先端システムの評価を行い,異種ダイアログコーパスに基づく基礎的な事前学習が,ドメインごとの個別モデルをトレーニングするよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-29T08:58:49Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。