論文の概要: F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods
- arxiv url: http://arxiv.org/abs/2401.14869v2
- Date: Tue, 20 Aug 2024 05:27:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 20:30:33.905982
- Title: F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods
- Title(参考訳): F-Eval:再評価手法による基礎能力の評価
- Authors: Yu Sun, Keyu Chen, Shujie Wang, Peiji Li, Qipeng Guo, Hang Yan, Xipeng Qiu, Xuanjing Huang, Dahua Lin,
- Abstract要約: F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
- 参考スコア(独自算出の注目度): 102.98899881389211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.
- Abstract(参考訳): 大型言語モデル(LLM)は前例のない性能で注目され、LSMを評価する研究が増えている。
しかし、これらの評価ベンチマークは、訓練前の段階で現れる基本的な能力を見越して、指示追従能力の評価に限られている。
従来の主観評価手法は主にAPIモデルによるスコアリングに応答する。
しかし、参照がないため、大きなモデルでは微妙な違いを識別する能力が限られている。
このギャップを埋めるために、表現、常識、論理などの基本能力を評価するための二言語評価ベンチマークであるF-Evalを提案する。
F-Evalのタスクには、複数選択目的タスク、オープンエンド目的タスク、参照ベース主観的タスク、参照フリー主観的タスクが含まれる。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
先進LLM13について評価を行った。
その結果,評価手法は他の評価装置よりも高い相関係数と大きな差があることが判明した。
さらに、異なるモデルサイズ、次元、正規化方法の影響についても論じる。
我々は、F-EvalがLLMの基本能力の研究を促進することを期待する。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Enhancing LLM Evaluations: The Garbling Trick [0.0]
大規模言語モデル(LLM)はますます強力になり、パフォーマンスに基づいたモデルの区別が困難になる。
本稿では,既存のLCM評価を,段階的に困難なタスクに変換する一般的な手法を提案する。
結果から,これらのモデルの比較推論能力,特に OpenAI の o1-preview と Google の gemini-pro-1.5 の区別が明らかになった。
論文 参考訳(メタデータ) (2024-11-03T11:39:50Z) - From Text to Insight: Leveraging Large Language Models for Performance Evaluation in Management [6.70908766695241]
本研究では,大規模言語モデル(LLM),特にGPT-4の可能性を探り,組織的タスクパフォーマンス評価における客観性を高める。
以上の結果から,GPT評価は人間の評価に匹敵するが,一貫性と信頼性が高いことが示唆された。
LLMはテキストベースのデータから意味のある構成物を抽出できるが、その範囲は特定のパフォーマンス評価形式に限定されている。
論文 参考訳(メタデータ) (2024-08-09T20:35:10Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
FLASKは、人間に基づく評価とモデルに基づく評価の両方のためのきめ細かい評価プロトコルである。
モデル性能の全体像を得るためには,評価の微粒化が重要であることを実験的に観察する。
論文 参考訳(メタデータ) (2023-07-20T14:56:35Z) - Evaluation Gaps in Machine Learning Practice [13.963766987258161]
実際に、機械学習モデルの評価は、しばしば、非文脈化された予測行動の狭い範囲に焦点を当てる。
評価対象の理想化された幅と実際の評価対象の狭い焦点との間の評価ギャップについて検討した。
これらの特性を研究することで、規範的な影響を持つコミットメントの範囲について、機械学習分野の暗黙の仮定を実証する。
論文 参考訳(メタデータ) (2022-05-11T04:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。