論文の概要: Clustering-based Learning for UAV Tracking and Pose Estimation
- arxiv url: http://arxiv.org/abs/2405.16867v1
- Date: Mon, 27 May 2024 06:33:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 16:50:47.275224
- Title: Clustering-based Learning for UAV Tracking and Pose Estimation
- Title(参考訳): UAV追跡のためのクラスタリングに基づく学習とポース推定
- Authors: Jiaping Xiao, Phumrapee Pisutsin, Cheng Wen Tsao, Mir Feroskhan,
- Abstract要約: 本研究は,UAV追跡と2種類のLiDARを用いたポーズ推定のためのクラスタリングに基づく学習検出手法であるCL-Detを開発する。
まず、Livox AviaデータとLiDAR 360データのタイムスタンプを調整し、その後、関心のあるオブジェクト(OOI)のポイントクラウドを環境から分離します。
提案手法は,CVPR 2024 UG2+ Challengeの最終リーダーボードにおいて,競争力のあるポーズ推定性能を示し,第5位にランクインする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: UAV tracking and pose estimation plays an imperative role in various UAV-related missions, such as formation control and anti-UAV measures. Accurately detecting and tracking UAVs in a 3D space remains a particularly challenging problem, as it requires extracting sparse features of micro UAVs from different flight environments and continuously matching correspondences, especially during agile flight. Generally, cameras and LiDARs are the two main types of sensors used to capture UAV trajectories in flight. However, both sensors have limitations in UAV classification and pose estimation. This technical report briefly introduces the method proposed by our team "NTU-ICG" for the CVPR 2024 UG2+ Challenge Track 5. This work develops a clustering-based learning detection approach, CL-Det, for UAV tracking and pose estimation using two types of LiDARs, namely Livox Avia and LiDAR 360. We combine the information from the two data sources to locate drones in 3D. We first align the timestamps of Livox Avia data and LiDAR 360 data and then separate the point cloud of objects of interest (OOIs) from the environment. The point cloud of OOIs is clustered using the DBSCAN method, with the midpoint of the largest cluster assumed to be the UAV position. Furthermore, we utilize historical estimations to fill in missing data. The proposed method shows competitive pose estimation performance and ranks 5th on the final leaderboard of the CVPR 2024 UG2+ Challenge.
- Abstract(参考訳): UAV追跡とポーズ推定は、UAV形成制御や反UAV対策など、様々なUAV関連ミッションにおいて重要な役割を担っている。
3D空間におけるUAVの正確な検出と追跡は、特にアジャイル飛行において、異なる飛行環境から微小UAVのスパースな特徴を抽出することが必要であるため、特に難しい問題である。
一般的に、カメラとLiDARは、飛行中のUAV軌道を捉えるために使用される2種類のセンサーである。
しかし、両方のセンサーはUAV分類とポーズ推定に制限がある。
本技術報告では,CVPR 2024 UG2+ Challenge Track 5におけるNTU-ICG法について紹介する。
本研究は,UAV追跡のためのクラスタリングに基づく学習検出手法であるCL-Detを開発し,Livox AviaとLiDAR 360の2種類のLiDARを用いてポーズ推定を行う。
2つのデータソースから得られる情報を組み合わせて、ドローンを3Dで見つける。
まず、Livox AviaデータとLiDAR 360データのタイムスタンプを調整し、その後、関心のあるオブジェクト(OOI)のポイントクラウドを環境から分離します。
OOIsの点雲はDBSCAN法を用いてクラスタ化され、UAV位置と推定される最大のクラスターの中点を持つ。
さらに, 過去の推定値を用いて, 欠落したデータの埋め合わせを行う。
提案手法は,CVPR 2024 UG2+ Challengeの最終リーダーボードにおいて,競争力のあるポーズ推定性能を示し,第5位にランクインする。
関連論文リスト
- UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
パッチ強度収束(Patch Intensity Convergence、PIC)技術は、手動ラベリングなしでUAV検出のための高忠実なバウンディングボックスを生成する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
論文 参考訳(メタデータ) (2024-09-09T13:27:53Z) - Multi-Modal UAV Detection, Classification and Tracking Algorithm -- Technical Report for CVPR 2024 UG2 Challenge [20.459377705070043]
本報告では, CVPR 2024 UAV追跡・姿勢推定チャレンジにおける課題であるUG2+の初当選モデルについて述べる。
高精度なUAV分類・追跡のためのマルチモーダルなUAV検出・分類・3次元追跡手法を提案する。
本システムでは,最先端の分類手法と高度な後処理手順を統合し,精度と堅牢性を向上する。
論文 参考訳(メタデータ) (2024-05-26T07:21:18Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
無人航空機(UAV)は輸送、監視、軍事など多くの地域で広く使われている。
従来は、UAVの先行情報が常に提供されていた追跡問題として、このようなアンチUAVタスクを単純化していた。
本稿では,従来のUAV情報を含まない複雑な場面において,UAVの認識を特徴とする新しい実用的対UAV問題を初めて定式化する。
論文 参考訳(メタデータ) (2023-06-27T19:30:23Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDARは、自律走行シーンのLiDAR点雲のための完全な1段式3Dオブジェクト検出器である。
標準的な2Dコンボリューションを持つRVベースの3D検出器は、最先端のBEVベースの検出器と同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-05-27T05:42:16Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
無人航空機(UAV)は安定した位置決めのために衛星システムに依存している。
このような状況下では、視覚に基づく技術が代替手段として機能し、UAVの自己配置能力を確実にする。
本稿では,UAV自己配置タスク用に設計された最初の公開データセットであるDenseUAVを提案する。
論文 参考訳(メタデータ) (2022-01-23T07:18:55Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Correlation Filters for Unmanned Aerial Vehicle-Based Aerial Tracking: A
Review and Experimental Evaluation [17.8941834997338]
識別相関フィルタ (DCF) ベースのトラッカーは, 単一のCPU上での高い計算効率とロバスト性で注目されている。
この研究では、23の最先端のDCFベースのトラッカーが、様々な問題を解決するためのイノベーションに従って要約されている。
実験では、UAVトラッキングにおけるDCFベースのトラッカーの現在の課題として、パフォーマンスを示し、実現可能性を検証する。
論文 参考訳(メタデータ) (2020-10-13T09:35:40Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。