Functional Programming Paradigm of Python for Scientific Computation Pipeline Integration
- URL: http://arxiv.org/abs/2405.16956v2
- Date: Mon, 3 Jun 2024 10:42:50 GMT
- Title: Functional Programming Paradigm of Python for Scientific Computation Pipeline Integration
- Authors: Chen Zhang, Lecheng Jia, Wei Zhang, Ning Wen,
- Abstract summary: This paper presents a novel functional programming paradigm based on the Python architecture and associated suites in programming practice.
The solution is intended for the integration of scientific computation flows.
- Score: 7.906894731056778
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of modern data processing has led to an increasing tendency towards interdisciplinarity, which frequently involves the importation of different technical approaches. Consequently, there is an urgent need for a unified data control system to facilitate the integration of varying libraries. This integration is of profound significance in accelerating prototype verification, optimising algorithm performance and minimising maintenance costs. This paper presents a novel functional programming (FP) paradigm based on the Python architecture and associated suites in programming practice, designed for the integration of pipelines of different data mapping operations. In particular, the solution is intended for the integration of scientific computation flows, which affords a robust yet flexible solution for the aforementioned challenges.
Related papers
- TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions [7.11946037942663]
This study presents a novel Python package combining data assimilation with deep neural networks to serve as models for state transition and observation functions.
Comprehensive experiments conducted on the Lorenz 63 and a two-dimensional shallow water system demonstrate significantly enhanced performance over standalone model predictions without assimilation.
Overall, this innovative software package enables flexible integration of deep learning representations within data assimilation, conferring a versatile tool to tackle complex high dimensional dynamical systems across scientific domains.
arXiv Detail & Related papers (2024-08-30T20:30:34Z) - Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data [23.661713049508375]
We propose an algorithm that learns over a submanifold in the setting of a client.
We show that our proposed algorithm converges sub-ly to a neighborhood of a first-order optimal solution by using a novel analysis.
arXiv Detail & Related papers (2024-06-12T17:53:28Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Self Optimisation and Automatic Code Generation by Evolutionary
Algorithms in PLC based Controlling Processes [0.0]
A novel approach based on evolutionary algorithms is proposed to self optimise the system logic of complex processes.
The presented approach is evaluated on an industrial liquid station process subject to a multi-objective problem.
arXiv Detail & Related papers (2023-04-12T06:36:54Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
We introduce a trainable neural model that learns to map problem instances to a piece-wise linear value function.
$nu$-SDDP can significantly reduce problem solving cost without sacrificing solution quality.
arXiv Detail & Related papers (2021-12-01T22:55:23Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesis is a solution for fast prototyping application-specific hardware.
We propose HLS, for the first time in the literature, graph neural networks that jointly predict acceleration performance and hardware costs.
We show that our approach achieves prediction accuracy comparable with that of commonly used simulators.
arXiv Detail & Related papers (2021-11-29T18:17:45Z) - Automated Evolutionary Approach for the Design of Composite Machine
Learning Pipelines [48.7576911714538]
The proposed approach is aimed to automate the design of composite machine learning pipelines.
It designs the pipelines with a customizable graph-based structure, analyzes the obtained results, and reproduces them.
The software implementation on this approach is presented as an open-source framework.
arXiv Detail & Related papers (2021-06-26T23:19:06Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.